Unsupervised Segmentation

You are currently viewing the documentation for version 1.8.3. To access documentation for other versions, click the "Switch Version" button located in the upper-right corner of the page.

■ To use the latest version, visit the Mech-Mind Download Center to download it.

■ If you're unsure about the version of the product you are using, please contact Mech-Mind Technical Support for assistance.

The following parameters need to be adjusted when the unsupervised segmentation model package is imported into this Step.

Model Package Settings

Model Package Management Tool

Parameter description: This parameter is used to open the deep learning model package management tool and import the deep learning model package. The model package file is a “.dlkpack” or “.dlkpackC” file exported from Mech-DLK.

Tuning instruction: Please refer to Deep Learning Model Package Management Tool for the usage.

Model Name

Parameter description: This parameter is used to select the model package that has been imported for this Step.

Tuning instruction: Once you have imported the deep learning model package, you can select the corresponding model name in the drop-down list.

Model Package Type

Parameter description: Once a Model Name is selected, the Model Package Type will be filled automatically, such as Object Detection (single model package) and Object Detection + Defect Segmentation + Classification (cascaded model package).

GPU ID

Parameter description: This parameter is used to select the device ID of the GPU that will be used for the inference.

Tuning instruction: Once you have selected the model name, you can select the GPU ID in the drop-down list of this parameter.

Inference Configuration

Parameter description: This parameter is used to configure parameters related to unsupervised segmentation model package inference. You can click Open the editor to open the inference configuration window. The parameter and its description included in this window are shown in the following table.

Parameter Parameter Description Tuning Instruction

OK/NG Confidence Threshold

The red part represents the NG range, and the green part represents the OK range. If the confidence value of the segmentation result is below the OK confidence threshold, the segmentation result is OK. If the confidence value of the segmentation result is above the NG confidence value, the segmentation result is NG.

Please drag the slider bar to adjust the confidence thresholds.

ROI settings

ROI Path

Parameter description: This parameter is used to set or modify the ROI.

Tuning instruction: Once the deep learning model is imported, a default ROI will be applied. It is not recommended to edit the ROI, because inference results may change from OK to NG after editing.

Before the inference, please check whether the ROI set here is consistent with the one set in Mech-DLK. If not, the recognition result may be affected.

During the inference, the ROI set during model training, i.e. the default ROI, is usually used. If the position of the object changes in the camera’s field of view, please adjust the ROI.

If you would like to use the default ROI again, please delete the ROI name below the Open the editor button.

Visualization Settings

Draw Defect Mask on Image

Parameter description: This parameter is used to determine whether to draw the defect mask on the image. If selected, a defect mask will be drawn on the input image.

Default value: Unselected.

Tuning instruction: Select to draw a mask on the input image. The figure below shows the result before and after selecting this option.

deep learning model package inference draw mask
Show All Results

Parameter description: This parameter is used to visualize all inference results of the cascaded model package. It can only be set when the Deep Learning Model Package Inference Step is used for cascaded model package inference.

Tuning recommendation: Please set this parameter according to your actual needs.

We Value Your Privacy

We use cookies to provide you with the best possible experience on our website. By continuing to use the site, you acknowledge that you agree to the use of cookies. If you decline, a single cookie will be used to ensure you're not tracked or remembered when you visit this website.