
Mech-DLK SDK User Manual
v2.0.2

Table of Contents
1. Welcome . 1

2. Installation Guide. 2

3. Get Started . 3

4. Sample Usage Guide. 8

4.1. C# (Windows). 8

4.1.1. Run Basic Samples. 11

4.1.2. Run Advanced Sample with HALCON . 12

4.1.3. Run Advanced Sample with OpenCV . 14

4.2. C++ (Windows) . 16

4.3. C (Windows). 23

5. API Reference . 30

6. FAQs . 31

1. Welcome
Welcome to Mech-DLK SDK User Manual. Let’s get started!

Overview

Mech-DLK SDK is a secondary development software kit specifically designed to be used with
Mech-DLK. Its main purpose is to help developers easily do deep learning inference in their
software systems. With Mech-DLK SDK, developers can rapidly deploy deep learning models and
flexibly integrate deep learning functionality into their own applications without reliance on Mech-
Vision. You can use the provided APIs to build applications in C#, C++, and C languages.

You can apply Mech-DLK SDK for the inference based on models exported from Mech-DLK
(version 2.4.2 or above).

Release Notes

Mech-DLK SDK 2.0.2

New Features

• Added C++ APIs for secondary development in C++ language. See C++ API Reference.

• Provided C++ samples and achieved collaborative development with OpenCV. See the sample
list and running prerequisites.

Release Notes of Previous Versions

Mech-DLK SDK 2.0.1 Release Notes

Mech-DLK SDK 2.0.0 Release Notes

Contents

This manual consists of the following chapters. Click to view the details according to your needs:

No. Chapter Content

1 Installation Guide
View the system requirements and obtain Mech-DLK SDK
and the third-party libraries and resources it depend upon.

2 Get Started
Learn to use Mech-DLK SDK for inference with a defect
segmentation model.

3 Sample Usage Guide
Learn about the types of samples and prerequisites to run
these samples and build and run these samples.

4 API Reference See the API reference of multiple languages.

5 FAQs View the frequently asked questions.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 1

https://docs.mech-mind.net/api-reference/dlk-sdk-cpp-api/2.0.2/index.html
release-note201.pdf
release-note200.pdf

2. Installation Guide

System Requirements

It is recommended that the device where model inference using Mech-DLK SDK is performed
should meet the following requirements.

Authorized dongle
version

Pro-Run Pro-Train

Operating system Windows 10 or above

CPU Intel® Core™ i7-6700 or above

Memory 8GB or above 16GB or above

Graphics card GeForce GTX 1660 or above GeForce RTX 3060 or above

Graphics card driver Version 472.50 or above

The Pro-Run version features Mech-DLK SDK, labeling, and Operation Mode. The Pro-Train
version supports all features, including module cascading, labeling, training, validation, and
Mech-DLK SDK.

Get Mech-DLK SDK

1. Create a local project folder on your device, such as dlk_sdk.

2. Clone the repository of Mech-DLK SDK from GitHub to the project folder.

3. Download the third-party libraries (3rd_dll.zip) and resources (resources.zip) that the Mech-
DLK SDK relies on to the project folder from Mech-Mind Download Center.

4. Unzip the downloaded packages of third-party libraries and resources. At this point, the project
folder should contain the following contents:

 Do NOT change any of these files and note down the directory for subsequent use.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 2

https://github.com/MechMindRobotics/mechdlk_sdk/tree/v2.0.2
https://downloads.mech-mind.com/?tab=tab-dlk-sdk

3. Get Started
This chapter introduces how to apply Mech-DLK SDK to achieve inference using a defect
segmentation model exported from Mech-DLK.

Prerequisites

• Install Mech-DLK SDK.

• Connect the license dongle provided by Mech-Mind to your device.

• Make sure that CodeMeter is running: In the system tray, check if the CodeMeter icon is
displayed in the Windows tray.

If you have installed Mech-DLK on your device, you don’t have to install CodeMeter again
because it’s already in place. Check the Windows tray to make sure that CodeMeter is
running.

Inference Flow

Function Description

In this section, we take the Defect Segmentation model exported from Mech-DLK as an example to
show the functions you need to use when using Mech-DLK SDK for model inference.

Create an Input Image

Call the following function to create an input image.

C#

MMindImage image = new MMindImage();
image.CreateFromPath("path/to/image.png");
List<MMindImage> images = new List<MMindImage> { image };

C++

mmind::dl::MMindImage image;
image.createFromPath(“path/to/image.png”);
std::vector<mmind::dl::MMindImage> images = {image};

C

MMindImage input;
createImage("path/to/image.png", &input);

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 3

Create an Inference Engine

Call the following function to create an inference engine.

C#

InferEngine inferEngine = new InferEngine();
inferEngine.Create("path/to/xxx.dlkpack", BackendType.GpuDefault, 0);

• If NVIDIA discrete graphics cards are available on your device, you can set the

inference backend, i.e., the second parameter in the function, to GpuDefault
or GpuOptimization.

◦ When the parameter is set to GpuOptimization, you need to wait for
one to five minutes for model optimization. FP16 is valid only under this
setting.

• If NVIDIA discrete graphics cards are unavailable on your device, you can only
set the inference backend to CPU.

• In this function, the third parameter represents the ID of the used NVIDIA

graphics cards, which is 0 when there is only one graphics card. When the
inference backend is set to CPU, this parameter is invalid.

C++

mmind::dl::MMindInferEngine engine;
engine.create(kPackPath);
// engine.setInferDeviceType(mmind::dl::InferDeviceType::GpuDefault);
// engine.setBatchSize(1);
// engine.setFloatPrecision(mmind::dl::FloatPrecisionType::FP32);
// engine.setDeviceId(0);
engine.load();

In C++ interfaces, the model parameters can be set according to the actual
situation:

• When the setxxx function is not called, by default, BatchSize is set to 1;

FloatPrecision is set to FP32; DeviceId is set to 0.

• If NVIDIA discrete graphics cards are available on your device,

InferDeviceType is set to GpuDefault; otherwise, InferDeviceType is

set to CPU.

• If you need to change the parameters of the inference engine, the setxxx
function must be placed ahead of the load() function.

• When InferDeviceType is set to GpuOptimization, you need to wait for
one to five minutes for model optimization. FP16 is valid only under this
setting.

C

Engine engine;

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 4

createPackInferEngine(&engine, "path/to/xxx.dlkpack", GpuDefault, 0);

• If NVIDIA discrete graphics cards are available on your device, you can set the

inference backend, i.e., the third parameter in the function, to GpuDefault or

GpuOptimization.

◦ When the inference backend is set to GpuOptimization, you need to
wait for one to five minutes for model optimization.

• If NVIDIA discrete graphics cards are unavailable on your device, you can only
set the inference backend to CPU.

• In this function, the fourth parameter represents the ID of the used NVIDIA

graphics cards, which is 0 when there is only one graphics card. When the
inference backend is set to CPU, this parameter is invalid.

Deep Learning Engine Inference

Call the function below for deep learning engine inference.

C#

inferEngine.Infer(images);

C++

engine.infer(images);

C

infer(&engine, &input, 1);

In this function, the parameter 1 denotes the number of images for inference, which

should equal the number of images in input.

Obtain the Defect Segmentation Result

Call the function below to obtain the defect segmentation result.

C#

List<Result> results;
inferEngine.GetResults(out results);

C++

std::vector<mmind::dl::MMindResult> results;

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 5

engine.getResults(results);

C

DefectAndEdgeResult* defectAndEdgeResult = NULL;
unsigned int resultNum = 0;
getDefectSegmentataionResult(&engine, 0, &defectAndEdgeResult,
&resultNum);

In this function, the second parameter 0 denotes the model index in the deep
learning model inference package.

• If the inference package is of a single model, the parameter can only be set to
0.

• If the inference package is of cascaded models, the parameter should be set
according to the order of modules in the model inference package.

Visualize Result

Call the function below to visualize the model inference result.

C#

inferEngine.ResultVisualization(images);
image.Show("result");

C++

engine.resultVisualization(images);
image.show("Result");

C

resultVisualization(&engine, &input, 1);
showImage(&input, "result");

In this function, the parameter 1 denotes the number of images for inference, which

should equal the number of images in input.

Release Memory

Call the following function(s) to release memory and prevent memory leaks.

C#

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 6

inferEngine.Release();

C++

engine.release();

C

releaseDefectSegmentationResult(&defectAndEdgeResult, resultNum);
releaseImage(&input);
releasePackInferEngine(&engine);

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 7

4. Sample Usage Guide
This chapter introduces you to the usage of C#, C++, and C samples.

C# Samples

Check the contents below to learn about the running prerequisites and ways to build and run C#
samples.

Learn about running prerequisites

Run Basic samples

Run an Advanced sample with HALCON

Run an Advanced sample with OpenCV

C++ Samples

Check the contents below to learn about the running prerequisites and ways to build and run C++
samples.

Learn about running prerequisites

Run Basic and Advanced samples

C Samples

Check the contents below to learn about the running prerequisites and ways to build and run C
samples.

Learn about running prerequisites

Run Basic and Advanced samples

4.1. C# (Windows)

Sample List

Two categories of samples are provided: Basic and Advanced.

• Basic: samples using models exported from Mech-DLK to do inference of single images and
simultaneous inference of images, as well as obtain and visualize results.

◦ ImageInfer

A sample for inference of single images (both single models and cascaded models are
supported)

◦ MultiImageInfer

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 8

https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/csharp/Basic/ImageInfer/ImageInfer.cs
https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/csharp/Basic/MutiImageInfer/MutiImageInfer.cs

A sample for simultaneous inference of images (both single models and cascaded models
are supported)

• Advanced: samples demonstrating collaborative development of Mech-DLK SDK with
HALCON/OpenCV.

◦ ImageInferWithHalcon

A sample that runs on the basis of Mech-DLK SDK and HALCON

◦ ImageInferWithOpenCV

A sample that runs on the basis of Mech-DLK SDK and OpenCV

Prerequisites

The usage of C# samples in Mech-DLK SDK is based on the following prerequisites:

• Install required software.

• Add related environment variables.

Install Required Software

The usage of the C# samples in Mech-DLK SDK requires the installation of Mech-DLK SDK and
Visual Studio.

Install Mech-DLK SDK

Please obtain the latest Mech-DLK SDK and the third-party libraries and resources it depends upon
according to the Installation Guide.

Install Visual Studio (Version 2017 or Above)

1. Download the Visual Studio installer.

2. During installation, please select .NET desktop development in the Desktop & Mobile category.
Then, click [ Install ] in the lower-right corner.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 9

https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/csharp/Advanced/ImageInferWithHalcon/ImageInferWithHalcon.cs
https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/csharp/Advanced/ImageInferWithOpenCV/ImageInferWithOpenCV.cs
https://visualstudio.microsoft.com/downloads/

Add Environment Variables

You can add the related environment variables by the following steps.

1. Right-click This PC on the desktop and select Properties.

2. Click Advanced system settings and on the Advanced tab of the pop-up System Properties
dialog box, click [ Environment Variables ] to open the Environment Variables dialog box.

3. In the System Properties box, click [ New ] and in the pop-up box of New System Variable,
enter MECHDL_DIR in the text field of Variable name and xxx/mechdlk_sdk in the text field of
Variable value. Then, click [ OK ].

4. In the System Properties box, scroll to Path and double-click it to show the Edit System
Variable dialog box.

5. Click [ New ] in the upper-right corner, and add %MECHDL_DIR%. Then, click [ OK ] in the lower-
right corner.

If you can find %MMIND_DLK% in the Edit System Variable dialog box, select it and click
[ Delete ] on the right to remove this variable.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 10

4.1.1. Run Basic Samples

You can build and run the provided samples by the following instructions if you have completed all
operations required in the Prerequisites section.

Build Samples

1. Find the MechDLCShapeSamples.sln file under xxx\mechdlk_sdk\samples\csharp and
double-click the file to open the solution in Visual Studio.

2. In the menu bar, select Build › Build Solution. An executable file will be generated and saved to
the bin folder (path: xxx\mechdlk_sdk\samples\csharp).

3. Copy and paste the resources folder under the project folder to the path
xxx\mechdlk_sdk\samples\csharp\bin.

4. Copy and paste all files in the 3rd_dll folder under the project folder to the path
xxx\mechdlk_sdk\samples\csharp\bin.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 11

5. Copy and paste all files in the mechdlk_sdk\dll directory under the project folder to the path
xxx\mechdlk_sdk\samples\csharp\bin.

 To run any C# sample in Mech-DLK SDK, you only need to perform Steps 3, 4, and 5 once.

Run Samples

You can run the samples in Visual Studio after building them, or you can run the samples by
double-clicking the executable files.

Run a Sample in Visual Studio

1. In the Solution Explorer panel, right-click a sample and select Set as Startup Project.

2. Click [ Start ] on the toolbar to run the sample.

Run the Executable File of a Sample

In the bin folder (path: xxx\mechdlk_sdk\samples\csharp\bin), double-click the executable file
named after the sample to run the sample and obtain results.

4.1.2. Run Advanced Sample with HALCON

You can build and run the provided sample by the following instructions if you have completed all
operations required in the Prerequisites section.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 12

Install HALCON

1. Download and install HALCON (C# version). Please note down the directory of HALCON.

2. Find the MechDLCShapeWithHalconSamples.sln file under
xxx\mechdlk_sdk\samples\csharp and double-click the file to open the solution in Visual
Studio.

3. In the Solution Explorer panel, select ImageInferWithHalcon › References. Then, right-click
References and select Add Reference.

4. In the pop-up Reference Manager dialog box, click [ Browse ] in the lower-right corner.

5. In the directory of HALCON, find and select the halcondotnet.dll file from the path
xxx\bin\dotnet35 and click [ Add ].

6. In the Reference Manager dialog box, click [ OK ] to finish reference adding.

The provided sample was tested with HALCON 20.11.1.2. The directory of the DLL file may
differ for different HALCON versions. Please follow the above steps according to the actual
situation.

Build the Sample

1. In the Visual Studio menu bar, select Build › Build Solution. An executable file is generated and
saved to the bin folder (xxx\mechdlk_sdk\samples\csharp).

2. Copy and paste the resources folder under the project folder to the path
xxx\mechdlk_sdk\samples\csharp\bin.

3. Copy and paste all files in the 3rd_dll folder under the project folder to the path
xxx\mechdlk_sdk\samples\csharp\bin.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 13

4. Copy and paste all files in the mechdlk_sdk\dll directory under the project folder to the path
xxx\mechdlk_sdk\samples\csharp\bin.

 To run any C# sample in Mech-DLK SDK, you only need to perform Steps 2, 3, and 4 once.

Run the Sample

You can run the sample in Visual Studio after building it, or you can run the sample by double-
clicking the executable file.

Run the Sample in Visual Studio

1. In the Solution Explorer panel, right-click the sample and select Set as Startup Project.

2. Click [ Start ] on the toolbar to run the sample.

Run the Executable File of the Sample

In the bin folder (path: xxx\mechdlk_sdk\samples\csharp\bin), double-click the executable file
named after the sample to run the sample and obtain results.

4.1.3. Run Advanced Sample with OpenCV

You can build and run the provided sample by the following instructions if you have completed all
operations required in the Prerequisites section.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 14

Install OpenCV

1. Download and install OpenCV (C# version), namely, OpenCvSharp. Please note down the
directory of OpenCvSharp.

2. Find the MechDLCShapeWithOpenCVSamples.sln file under
xxx\mechdlk_sdk\samples\csharp and double-click the file to open the solution in Visual
Studio.

3. In the Solution Explorer panel, select ImageInferWithOpenCV › References. Right-click
References and select Add Reference.

4. In the pop-up Reference Manager dialog box, click [ Browse ] in the lower-right corner.

5. In the directory of OpenCvSharp, find and select the OpenCvSharp.dll file from the path
xxx\ManagedLib\net461 and then click [ Add ].

6. In the Reference Manager dialog box, click [ OK ] to finish reference adding.

The provided sample was tested with OpenCvSharp 4.5.3. The directory of the DLL file may
differ for different OpenCvSharp versions. Please follow the above steps according to the
actual situation.

Build the Sample

1. In the Visual Studio menu bar, select Build › Build Solution. An executable file will be generated
and saved to the bin folder (xxx\mechdlk_sdk\samples\csharp).

2. Copy and paste the resources folder under the project folder to the path
xxx\mechdlk_sdk\samples\csharp\bin.

3. Copy and paste all files in the 3rd_dll folder under the project folder to the path

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 15

https://github.com/shimat/opencvsharp/releases

xxx\mechdlk_sdk\samples\csharp\bin.

4. Copy and paste all files in the mechdlk_sdk\dll directory under the project folder to the path
xxx\mechdlk_sdk\samples\csharp\bin.

5. In the directory OpenCvSharp, copy and paste the OpenCvSharpExtern.dll file in the
directory of NativeLib\win\x64 to the path xxx\mechdlk_sdk\samples\csharp\bin.

 To run any C# sample in Mech-DLK SDK, you only need to perform Steps 2, 3, and 4 once.

Run the Sample

You can run the sample in Visual Studio after building it, or you can run the sample by double-
clicking the executable file.

Run the Sample in Visual Studio

1. In the Solution Explorer panel, right-click the sample and select Set as Startup Project.

2. Click [ Start ] on the toolbar to run the sample.

Run the Executable File of the Sample

In the bin folder (path: xxx\mechdlk_sdk\samples\csharp\bin), double-click the executable file
named after the sample to run the sample and obtain results.

4.2. C++ (Windows)

On this page, you will learn to run the C++ samples in Mech-DLK SDK with CMake and Visual
Studio on a Windows operating system.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 16

Sample List

Two categories of samples are provided: Basic and Advanced.

• Basic: samples using single models exported from Mech-DLK to do inference of single images
and simultaneous inference of multiple images as well as obtain and visualize results.

• Advanced: a sample demonstrating collaborative development of Mech-DLK SDK with
OpenCV.

Basic

• ImageInfer: a sample for inference of single images.

• MultiImageInfer: a sample for simultaneous inference of images.

Advanced

• ImageInferWithOpenCV: a sample running on the basis of Mech-DLK SDK and OpenCV.

Prerequisites

The prerequisites for the use of C++ samples in Mech-DLK SDK are as follows:

• Install required software.

• (Optional) Install OpenCV.

• Add related environment variables.

Install Required Software

In order to use the C++ samples of Mech-DLK SDK, Mech-DLK SDK, CMake, and Visual Studio
must be installed.

Install Mech-DLK SDK

Please obtain the latest Mech-DLK SDK and the third-party libraries and resources it depends upon
according to the Installation Guide.

Install CMake (Version 3.2 or Above)

1. Download CMake: Select the installer to the right of Windows x64 Installer.

2. During installation, select the following two options so that CMake can be added to
environment variables, and a desktop icon can be created for CMake.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 17

https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/cpp/Basic/ImageInfer/ImageInfer.cpp
https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/cpp/Basic/MultiImageInfer/MultiImageInfer.cpp
https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/cpp/Advanced/ImageInferWithOpenCV/ImageInferWithOpenCV.cpp
https://cmake.org/download/

Install Visual Studio (Version 2017 or Above)

1. Download the Visual Studio installer.

2. During installation, please select Desktop development with C++ in the Desktop & Mobile
category. Then, click [ Install ] in the lower-right corner.

Install OpenCV (Optional)

If you need to run the Advanced sample (ImageInferWithOpenCV), please install OpenCV by
the following steps and add it to the system variables.

1. Download and install OpenCV. Please note down the installation directory of OpenCV.

2. After installation, you can find the following files in the directory of OpenCV:

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 18

https://visualstudio.microsoft.com/downloads/
https://opencv.org/releases/

The sample ImageInferWithOpenCV was tested with OpenCV 4.8.0, and results can be
obtained.

Add Environment Variables

You can add the related environment variables by the following steps.

1. Right-click This PC on the desktop and select Properties.

2. Click Advanced system settings and on the Advanced tab of the pop-up System Properties
dialog box, click [ Environment Variables ] to open the Environment Variables dialog box.

3. In the System Properties box, click [ New ] and in the pop-up box of New System Variable,
enter MECHDL_DIR in the text field of Variable name and xxx/mechdlk_sdk in the text field of
Variable value. Then, click [ OK ].

If you want to run the sample ImageInferWithOpenCV, please add OpenCV to the
environment variables:

1. In the System Properties box, click [ New ].

2. In the pop-up box of New System Variable, enter OPENCV_DIR in the text field of
Variable name and the path to the build folder of OpenCV (xxx/opencv/build) in the
text field of Variable value. Then, click [ OK ].

4. In the System Properties box, scroll to Path and double-click it to show the Edit System
Variable dialog box.

5. Click [ New ] in the upper-right corner and add %MECHDL_DIR%. Then, click [ OK ] in the lower-
right corner.

If you can find %MMIND_DLK% in the Edit System Variable dialog box, select it and click
[ Delete ] on the right to remove this variable.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 19

Build and Run Samples

You can build all samples at a time.

Configure Samples in CMake

1. Double-click the CMake desktop icon to open the software.

2. Enter or select the path to the source code and the path to build the binaries. For the path to
build the binaries, you can add \build right after the path to the source code if there isn’t one
and continue the configuration.

Where is the source code xxx\mechdlk_sdk\samples\cpp

Where to build the binaries xxx\mechdlk_sdk\samples\cpp\build

3. Click [ Configure ]. When you first click the Configure button, a window will pop up to confirm
whether you want to create the build folder. Click [ Yes ] to create the folder.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 20

Then, you will enter the configuration page. Select the Visual Studio version and click [ Finish ].

When the configuration completes, the statement Configuring done will appear in the last line
of the log.

Do not select the USE_OPENCV option if you want to run Basic samples. Select the
USE_OPENCV option if you want to run the Advanced sample.

4. Click [ Generate ] to generate Visual Studio solutions. When the generation completes, the
statement Generating done will appear in the last line of the log. Then, click [ Open Project ] to

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 21

open the solution in Visual Studio.

Build Samples in Visual Studio

1. On the Visual Studio toolbar, confirm that the solution configuration is Release. Currently, DLL
files for Debug are unavailable.

2. In the menu bar, select Build › Build Solution. An executable file is generated for each sample.
The executable files are saved to the Release folder (path:
xxx\mechdlk_sdk\samples\cpp\build).

3. Copy and paste the resources folder under the project folder to the path
xxx\mechdlk_sdk\samples\cpp\build\Release.

4. Copy and paste all files in the 3rd_dll folder under the project folder to the path
xxx\mechdlk_sdk\samples\cpp\build\Release.

5. Copy and paste all files in the mechdlk_sdk\dll folder under the project folder to the path
xxx\mechdlk_sdk\samples\cpp\build\Release.

6. (Optional) If you need to run the Advanced sample, please copy and paste the

opencv_world480.dll file in the OpenCV directory (xxx\opencv\build\x64\vc16\bin) to the
path xxx\mechdlk_sdk\samples\cpp\build\Release.

Run Samples

You can run the sample in Visual Studio after building it, or you can run the sample by double-
clicking the executable file.

Run a Sample in Visual Studio

1. In the Solution Explorer panel, right-click a sample and select Set as Startup Project.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 22

2. Click [ Local Windows Debugger ] on the toolbar to run the sample.

Run the Executable File of the Sample

Open the Release folder and double-click the executable file named after the sample to run the
sample and obtain results.

4.3. C (Windows)

In this section, you will learn to run the C samples in Mech-DLK SDK with CMake and Visual Studio
on a Windows operating system.

Sample List

Two categories of samples are provided: Basic and Advanced.

• Basic: samples using single models exported from Mech-DLK to do inference of single images
as well as obtain and visualize results.

• Advanced: samples for simultaneous inference of multiple images and inference of cascaded
models.

Basic

• Classification: a sample for inference based on the Classification model.

• DefectSegmentation: a sample for inference based on the Defect Segmentation model.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 23

https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/c/Basic/Classification.c
https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/c/Basic/DefectSegmentation.c

• FastPositioning: a sample for inference based on the Fast Positioning model.

• InstanceSegmentation: a sample for inference based on the Instance Segmentation model.

• ObjectDetection: a sample for inference based on the Object Detection model.

Advanced

• CascadeModel: a sample for inference based on cascaded models.

• FolderImagesInfer: a sample used to show the inference of images in a folder one by one.

• MultiImageInfer: a sample for simultaneous inference of images.

Prerequisites

The prerequisites for the use of C samples in Mech-DLK SDK are as follows:

• Install required software.

• Added related environment variables.

Install Required Software

Before using the C samples in Mech-DLK SDK, you should install Mech-DLK SDK, CMake, and
Visual Studio.

Install Mech-DLK SDK

Please obtain the latest Mech-DLK SDK and the third-party libraries and resources it depends upon
according to the Installation Guide.

Install CMake (Version 3.2 or Above)

1. Download CMake: Select the installer to the right of Windows x64 Installer.

2. During installation, select the following two options so that CMake can be added to
environment variables, and a desktop icon can be created for CMake.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 24

https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/c/Basic/FastPositioning.c
https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/c/Basic/InstanceSegmentation.c
https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/c/Basic/ObjectDetection.c
https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/c/Advanced/CascadeModel.c
https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/c/Advanced/FolderImagesInfer.c
https://github.com/MechMindRobotics/mechdlk_sdk/blob/v2.0.2/samples/c/Advanced/MultiImageInfer.c
https://cmake.org/download/

Install Visual Studio (Version 2017 or Above)

1. Download the Visual Studio installer.

2. During installation, please select “Desktop development with C++” in the Desktop & Mobile
category. Then, click [ Install ] in the lower-right corner.

Add Environment Variables

You can add the related environment variables by the following steps:

1. Right-click This PC on the desktop and select Properties.

2. Click Advanced system settings and on the Advanced tab of the pop-up System Properties
dialog box, click [ Environment Variables ] to open the Environment Variables dialog box.

3. In the System Properties box, click [ New ] and in the pop-up box of New System Variable,
enter MECHDL_DIR in the text field of Variable name and xxx/mechdlk_sdk in the text field of
Variable value. Then, click [ OK ].

4. In the System Properties box, scroll to Path and double-click it to show the Edit System
Variable dialog box.

5. Click [ New ] in the upper-right corner, and add %MECHDL_DIR%. Then, click [ OK ] in the lower-
right corner.

If you can find %MMIND_DLK% in the Edit System Variable dialog box, select it and click
[ Delete ] on the right to remove this variable.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 25

https://visualstudio.microsoft.com/downloads/

Build and Run Samples

You can build all samples at a time.

Configure Samples in CMake

1. Double-click the CMake desktop icon to open the software.

2. Enter or select the path to the source code and the path to build the binaries. For the path to
build the binaries, you can add \build right after the path to the source code if there isn’t one
and continue the configuration.

Where is the source code xxx\mechdlk_sdk\samples\c

Where to build the binaries xxx\mechdlk_sdk\samples\c\build

3. Click [ Configure ]. When you first click the Configure button, a window will pop up to confirm
whether you want to create the build folder. Click [ Yes ] to create the folder.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 26

Then, you will enter the configuration window. Select the Visual Studio version and click
[ Finish ].

When the configuration completes, the statement Configuring done will appear in the last line
of the log.

4. Click [ Generate ] to generate Visual Studio solutions. When the generation completes, the
statement Generating done will appear in the last line of the log. Then, click [ Open Project ] to
open the solutions in Visual Studio.

You can also open the created build folder (path: xxx\mechdlk_sdk\samples\c\build), find
MechDLKSDKCSamples.sln, and double-click it to open the solutions in Visual Studio.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 27

Build Samples in Visual Studio

1. On the Visual Studio toolbar, confirm that the solution configuration is Release. Currently, DLL
files for Debug are unavailable.

2. In the menu bar, select Build › Build Solution. An executable file (.exe) is generated for each
sample. The executable files are saved to the Release folder, located in the Where to build the
binaries path that you entered in CMake.

3. Copy and paste the resources folder to the following path:

◦ xxx\mechdlk_sdk\samples\c\build\Release

4. Copy and paste all files in the 3rd_dll folder under the project folder to the path
xxx\mechdlk_sdk\samples\c\build\Release.

5. Copy and paste all files in the mechdlk_sdk\dll folder under the project folder to the path
xxx\mechdlk_sdk\samples\c\build\Release.

Run Samples

You can run the samples in Visual Studio after building them, or you can run the samples by
double-clicking the executable files.

Run a Sample in Visual Studio

1. In the Solution Explorer panel, right-click a sample and select Set as Startup Project.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 28

2. Click [ Local Windows Debugger ] on the toolbar to run the sample.

Run the Executable File of a Sample

Open the Release folder and double-click the executable file (.exe) named after the sample to run
the sample and obtain results.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 29

5. API Reference

Latest Resources

C# API Reference

View details

C++ API Reference

View details

C API Reference

View details

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 30

https://docs.mech-mind.net/api-reference/dlk-sdk-csharp-api/2.0.2/index.html
https://docs.mech-mind.net/api-reference/dlk-sdk-cpp-api/2.0.2/index.html
https://docs.mech-mind.net/api-reference/dlk-sdk-c-api/2.0.2/index.html

6. FAQs
The following are frequently asked questions and corresponding answers regarding Mech-DLK
SDK. If you cannot find the answer you need, please go to the Q&A section of Mech-Mind Online
Community to post your questions and exchange ideas.

Model-Related Questions

Can models trained with Mech-DLK be used in other software?

Yes, models trained with Mech-DLK can be used in other software as long as the following
requirements are satisfied:

• The software can use Mech-DLK SDK to load the inference model.

• The software can call programs written with APIs in the corresponding language to use the
model.

What kind of models can Mech-Vision / Mech-DLK SDK support?

Mech-Vision / Mech-DLK SDK can only use models trained with Mech-DLK or super models
provided by Mech-Mind.

Can models trained with Mech-DLK be converted into models in other formats?

No, the model format cannot be converted.

Development-Related Questions

What third-party software can be integrated with Mech-DLK SDK?

It has been verified that Mech-DLK SDK supports the integration with LabVIEW to load and call
DLLs in C. In addition, as long as third-party software can support the calling of program blocks
in C, C#, or C++, it can be integrated with Mech-DLK SDK and thus call program blocks.

What language of APIs does Mech-DLK SDK support?

You can use the provided APIs to build applications in C#, C++, and C languages. We are
working on APIs in Python. If you need to use such APIs, please contact Mech-Mind Technical
Support.

Mech-DLK SDK User Manual

© 2023 Mech-Mind Robotics Technologies Ltd. 31

https://community.mech-mind.com/c/q-a/8
https://community.mech-mind.com/c/q-a/8
https://downloads.mech-mind.com/?tab=tab-dlmodels

	Mech-DLK SDK User Manual
	Table of Contents
	1. Welcome
	2. Installation Guide
	3. Get Started
	4. Sample Usage Guide
	4.1. C# (Windows)
	4.1.1. Run Basic Samples
	4.1.2. Run Advanced Sample with HALCON
	4.1.3. Run Advanced Sample with OpenCV

	4.2. C++ (Windows)
	4.3. C (Windows)

	5. API Reference
	6. FAQs

