
VCI Frame and Signal API
Software Version 1.0

SOFTWARE DESIGN GUIDE
4.02.0250.20026 1.0 en-US ENGLISH

Important User Information
Disclaimer
The information in this document is for informational purposes only. Please inform HMS Industrial Networks of any
inaccuracies or omissions found in this document. HMS Industrial Networks disclaims any responsibility or liability
for any errors that may appear in this document.

HMS Industrial Networks reserves the right to modify its products in line with its policy of continuous product
development. The information in this document shall therefore not be construed as a commitment on the part of
HMS Industrial Networks and is subject to change without notice. HMS Industrial Networks makes no commitment
to update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only
intended to help improve understanding of the functionality and handling of the product. In view of the wide range
of possible applications of the product, and because of the many variables and requirements associated with any
particular implementation, HMS Industrial Networks cannot assume responsibility or liability for actual use based on
the data, examples or illustrations included in this document nor for any damages incurred during installation of the
product. Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the
product is used correctly in their specific application and that the application meets all performance and safety
requirements including any applicable laws, regulations, codes and standards. Further, HMS Industrial Networks will
under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of
undocumented features or functional side effects found outside the documented scope of the product. The effects
caused by any direct or indirect use of such aspects of the product are undefined and may include e.g. compatibility
issues and stability issues.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Table of Contents Page

1 User Guide ... 3
1.1 Related Documents ..3

1.2 Document History ..3

1.3 Conventions..4

2 System Overview... 5
2.1 VCI Components ..5

2.2 Components of the Frame and Signal API ...6
2.2.1 Message Based Clients.. .. 7

2.2.2 Signal Based Clients ... 8

2.2.3 CAN Specific Components ... 10

3 Communication ... 13
3.1 Signal Based Communication ... 13

3.1.1 Accessing and Initializing the Signal Set 13

3.1.2 Converting Signal Values 15

3.1.3 Reading Receive Signal Sets.. . .. 15

3.1.4 Writing Transmit Signal Sets 16

3.1.5 Deactivating and Releasing the Signal Set .. 16

3.2 CAN Specific Communication ... 17
3.2.1 Creating a Message Switch... 17

3.2.2 Initializing and Activating the Message Switch.... 18

3.2.3 Creating and Initializing Clients: Message Sinks... 19

3.2.4 Creating and Initializing Clients: Message Sources ... 22

3.2.5 Disconnecting Clients 27

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

4 API Functions... 28
4.1 Exported Functions... 28

4.1.1 VciCreateCanMsgSwitch 28

4.2 Interface IUnknown.. 29
4.2.1 QueryInterface ... 29

4.2.2 AddRef.. . .. 29

4.2.3 Release 30

4.3 Signal Specific Interfaces ... 31
4.3.1 ISignalSet.. . .. 31

4.3.2 IRSignalSet ... 37

4.3.3 ITSignalSet ... 38

4.4 CAN Specific Interfaces ... 39
4.4.1 Message Switch: ICanMsgSwitch ... 39

4.4.2 Message Sink: ICanRMsgBuffer.. .. 43

4.4.3 Message Sink: ICanRMsgQueue ... 45

4.4.4 Message Sink: ICanRMsgSet 47

4.4.5 Message Source: ICanTMsgBuffer. 49

4.4.6 Message Source: ICanTMsgQueue 51

4.4.7 Message Source: ICanTMsgSet 53

5 Data Structures.. 55
5.1 CAN Specific Data Types .. 55

5.1.1 CANMSGSWITCHSTATUS 55

5.2 Signal Specific Data Types.. 55
5.2.1 FSLVAR 55

5.2.2 FSLSIGNAL.... 56

User Guide 3 (58)

1 User Guide
Please read the manual carefully. Make sure you fully understand the manual before using the
product.

1.1 Related Documents
Document Author

VCI: C API Software Version 3/4 Software Design Guide HMS

VCI Driver Installation Guide HMS

1.2 Document History
Version Date Description

1.0 November 2019 First release

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

User Guide 4 (58)

1.3 Conventions
Instructions and results are structured as follows:

► instruction 1

► instruction 2

→ result 1

→ result 2

Lists are structured as follows:

• item 1

• item 2

Bold typeface indicates interactive parts such as connectors and switches on the hardware, or
menus and buttons in a graphical user interface.

This font is used to indicate program code and other
kinds of data input/output such as configuration scripts.

This is a cross-reference within this document: Conventions, p. 4

This is an external link (URL): www.hms-networks.com

This is additional information which may facilitate installation and/or operation.

This instruction must be followed to avoid a risk of reduced functionality and/or damage
to the equipment, or to avoid a network security risk.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

http://www.hms-networks.com

System Overview 5 (58)

2 System Overview
2.1 VCI Components

The VCI frame and signal library (VCIFSL) is an API extension of the VCI that provides components
and functions to simplify accessing messages and processing signals and messages. In this guide
the VCI frame and signal library VCIFSL.DLL is described.

Fig. 1 System structure and components

The VCI system service manages the individual VCI device drivers, the access to the various
interface boards and bus adapters, and provides mechanisms for the exchange of data and
commands between user mode and kernel mode. The components of the User Mode provide
the connection between the VCI System Service and the various application programs. The frame
and signal library provides the API and programming interfaces via components that are
designed according to the Microsoft Component Object Model (MS-COM).

All provided components implement the interface IUnknown, that is defined by MS-COM. The
server functionality that is specified in MS-COM is not implemented. The components do not
have a COM conform fabric or automation interface. Therefore the VCI specific components are
not created with IClassFactory and do not have an IDispatch interface. They can not be
used by script or .NET languages.

Regarding multi threading, simultaneous access to particular components from several threads is
possible. Every thread has to open an own instance of the desired component or interface. The
individual functions of an interface must not be called by different threads, because the
implementation is not thread safe due to performance reasons.

The components of the frame and signal library VCIFSL.DLL do not have to be assigned to an
apartment, as usual in COM. If the VCI specific components are used exclusively, without any
other COM components the particular threads of an application do not have to be assigned to an
apartment (MTA) nor create an apartment (STA) and therefore do not have to call the function

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

System Overview 6 (58)

CoInitialize() or CoInitializeEx(). For more information see Microsoft Visual
Studio Help in chapter Processes, Threads and Apartments or description of functions
CoInitialize() and CoInitializeEx().

2.2 Components of the Frame and Signal API
The VCI frame and signal API is an extension for VCI message channels. The central component is
the message switch, to which all clients are connected.

Fig. 2 Components

Two different client types are connected to the message switch:

• message sink: receiver, destination of a message

• message source: transmitter, source of a message

The time and event controlled distributor of the message switch transmits message from VCI
internal message sources to the receiving client and vice versa from the transmitting client to VCI
internal message sinks. Normally the distributor handles the clients in the same sequence as the
clients were registered at the distributor. The processing time depends on the number of
connected clients.

The clients can either be message based or signal based.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

System Overview 7 (58)

2.2.1 Message Based Clients
Message based clients provide interfaces for applications to transmit and to receive messages.

Fig. 3 Message based clients

The message sink client receives messages from a VCI internal source via the message switch.
The received messages are buffered and provided via a destination specific interface to the
application. The message source client buffers the messages received from the application and
transmits the message via the message switch to a VCI internal sink. The message source client
can transmit the messages directly, cyclically or delayed.

To transmit and receive messages three kinds of buffers can be used:

• simple buffer:

– only the last received or written message is buffered and can be read

– new message overwrites a not yet read message

• FIFO:

– buffers in chronological sequence, no message is lost

– must be read regularly to avoid overrun

• message set:

– pools several messages

– each message is allocated either to a simple buffer or to a FIFO

For a detailed description of the buffer types see CAN Specific Components, p. 10.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

System Overview 8 (58)

2.2.2 Signal Based Clients
Signal based clients provide interfaces for applications to transmit and to receive signals and
process values. Signal based clients act in the same way as message based clients and therefore
they decouple the application data from the bus specific message packets. Signals are organized
in signal sets. Signal sets can be accessed with the functions of interface ISignalSet or via
the functions of the derived interfaces IRSignalSet or ITSignalSet.

The sink is a client that receives signals packed in messages from a VCI internal source via the
message switch and extracts the contained signal. The source is a client that packs signals into
messages and transmits the messages to a VCI internal sink via the message switch.

Fig. 4 Signal based clients

To transmit and receive signal sets two kinds of buffer can be used. Each signal is assigned to one
kind of buffer.

The following kinds of buffer can be used:

• simple buffer:

– only the last received or written signal is buffered and can be read

– a new signal overwrites a not yet read signal

• FIFO:

– buffers in chronological sequence, no signal is lost

– must be read regularly to avoid overrun

The signals of a signal set are assigned to messages based on a description in a data base file.

Signals can be mapped in two ways:

• message based assignment: assigning individual signals to one or more messages

• process specific assignment: pooling of individual signals or process values in groups, so-
called process data units (PDUs) and assigning of the PDUs to different messages (for
example if, process-related, various signals must be transmitted together)

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

System Overview 9 (58)

Fig. 5 Message based assignment

Fig. 6 Process specific assignment

The receive signal set (sink) receives signals packed in messages from a VCI internal source via
the message switch. Based on the description in a data base file the client extracts the signals
from the message and writes the extracted values and the receive time in the buffer. The signals
can then be read with the function Read.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

System Overview 10 (58)

The transmit signal set (source) packs signals into messages and transmits the messages to a VCI
internal sink via the message switch. The client reads the message from the buffer and packs,
based on the description in a data base file, the signals into a message and transmits the
message packets via the message switch. The signals can be transmitted with the function
Write.

The rules how the signals (process data) are mapped to the messages are described in a data
base file. The data base file can be generated with the Ixxat DIM Editor (contained in the VCI
installation). A possible format is the FIBEX format (field bus exchange format), the standard of
the “Association for Standardization of Automation and Measuring Systems” (ASAM) which is
used mainly for the description of controller networks in the automotive industry (see MCD-2
NET on www.asam.net). Another proprietary format is CANdb from Vector.

2.2.3 CAN Specific Components
CAN specific components are connected to the bus adapter via a CAN channel that is defined by
the application. The messages received from the bus adapter are written into the receive FIFO of
the CAN channel. The distributor transmits the messages via the message switch to the
connected message sink clients. Messages that are provided by a message source client are
transmitted by the distributor to the Transmit FIFO of the channel. The CAN specific message
switch communicates with the VCI via a CAN channel with extended functionality
(ICanChannel2). CAN channels are not prioritized. For the message switch the same
conditions as for all other VCI specific applications apply. The message switch can be used as
exclusive switch or as non-exclusive switch. For more information about CAN channels see VCI: C
++ Software Design Guide.

Fig. 7 CAN message sink and CAN message source

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

www.asam.net

System Overview 11 (58)

Message Sink

The message sink is a client that receives CAN messages from the CAN channel via the message
switch.

CAN specific message switches support the following types of message sinks:

• receive message buffer (IID_ICanRMsgBuffer):

– simple buffer that buffers a message with the CAN ID defined by application and
counts the number of received messages

– only the last received or written message is buffered and can be read

– new message overwrites a not yet read message

– by calling Read the counter is set to 0 and therefore the counter shows the number of
overwritten messages

• receive message queue (IID_ICanRMsgQueue):

– FIFO with set size

– buffers messages with the CAN ID defined by application in chronological sequence, no
message is lost

– must be read regularly to avoid overrun

– several messages can be read simultaneously with Read

• receive message set (IID_ICanRMsgSet):

– combination of various message buffers with different IDs (simple buffers or FIFOs)

– several messages can be read simultaneously with Read

• receive signal set (IID_ICanRSignalSet):

– combination of various signals

– signal values are extracted from the receive messages with use of the description in
the data base

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

System Overview 12 (58)

Message Source

The message source is a client that transmits CAN messages to the CAN channel via the message
switch.

The message switch checks all sources periodically and event-driven, dependent on the set clock
frequency and the number of connected clients.

CAN specific message switches support the following types of message sources:

• transmit message buffer (IID_ICanTMsgBuffer):

– simple buffer that buffers one message from the application

– with Write messages can be transmitted directly, delayed or cyclically

• transmit message queue (IID_ICanTMsgQueue):

– FIFO with set size

– buffers messages from the application in chronological sequence, no message is lost

– transmits the messages in the received order directly, delayed or cyclically

– several messages can be transmitted simultaneously with Write

• transmit message set (IID_ICanTMsgSet):

– combination of various message buffers with different IDs (simple buffers or FIFOs)

– several messages can be transmitted simultaneously with Write

• transmit signal set (IID_ICanTSignalSet):

– combination of various signals, transmission after a value change or timer-driven

– signal values are packed to messages with use of the description in the data base

For more information see CAN Specific Communication, p. 17.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 13 (58)

3 Communication
3.1 Signal Based Communication

Signals are organized in signal sets. For more information about signal based clients see Signal
Based Clients, p. 8. For information how to create signal based clients see Creating a Receive
Signal Set, p. 22 and Creating a Transmit Signal Set, p. 26.

3.1.1 Accessing and Initializing the Signal Set
► Access the signal set with functions of the interface ISignalSet or via the functions of

the derived interfaces IRSignalSet or ITSignalSet.

► Initialize the signal set (sink and source) with function LoadDB:

– In parameter pszFile determine the absolute or relative file path including the name of
the data base file as 0-terminated character string.

– In parameter pszPara further data base specific parameter can be determined as value
pair keyword=value (case sensitive). Separate value pairs with semicolon. Currently
defined keywords are cluster, channel and invalsigvals . For more information see
LoadDB parameter pszPara.

– In parameter pszSigs specify the signals that are received or transmitted from the
signal set. Select only signals that refer to the selected network and if determined, the
selected channel (in pszPara). Signals that refer to other networks or channels are
ignored. For more information see LoadDB parameter pszSigs and Signal Description,
p. 13.

– In parameter awDepth specify the type of buffer to be used for each signal. Value 0 or
1 defines a simple buffer. Value higher than 1 defines a FIFO. For more information see
LoadDB parameter awDepth and Buffer Type, p. 14.

– In parameter dwCount define the capacity of the arrays resp. the number of elements
in the arrays awDepth and shSigId. The value must match the number of character
strings that are defined in pszSigs (without the empty terminating string, see LoadDB
parameter dwCount).

If run successfully:

→ Parameter ahSigId returns a pointer to the array that contains the handles and
reference IDs of signal buffers.

► To request or change more features call GetAttr or SetAttr.

► Activate the signal set with function Enable.

→ Connection to message switch is established.

→ Messages and the contained signals can be received and transmitted.

Signal Description

Signals are described with the name of the message package or of the PDU that contains the
signal in combination with the frame or PDU specific name of the signal. The description with the
data base internal unique ID is also possible.

Via Frame

″FrameShortName/SignalShortName″ or
″$frm/FrameShortName/SignalShortName″

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 14 (58)

Via PDU

″$pdu/PDUShortName/SignalShortName″

Via Data Base Internal ID

″$id/SignalID″

Example

The example code shows the description of the signals 1–6 in Fig. 6 Process specific assignment,
p. 9 in the according tabular sequence.

static TCHAR szSignals[] =
TEXT(″$pdu/PDU3/Signal4\0″) // Index 0
TEXT(″$pdu/PDU2/Signal2\0″) // Index 1
TEXT(″$pdu/PDU2/Signal6\0″) // Index 2
TEXT(″$pdu/PDU2/Signal5\0″) // Index 3
TEXT(″$pdu/PDU1/Signal3\0″) // Index 4
TEXT(″$pdu/PDU1/Signal1\0″) // Index 5
TEXT(″\0″); // end of table

With a FIBEX data base it is possible to use the same names for different signals if the signals are
contained in different messages or PDUs. For example the signal S1 can be contained in the
message MSG1 and a second signal that is contained in the message MSG2 can also be named S1.
Therefore a signal must always be identified by the entire description, not only by the signal
name.

The example shows the signal name Air, that is used in three different measured values of a
weather station.

static TCHAR szSignals[] =
TEXT(″$frm/Pressure/Air\0″) // air pressure
TEXT(″$frm/Temperature/Air\0″) // air temperature
TEXT(″$pdu/Humidity_pdu/Air\0″) // humidity
TEXT(″\0″);

Buffer Type

To create a simple buffer for an individual signal that is defined in pszSigs, define value 0 or 1 in
the array awDepth. To create a FIFO for an individual signal define a value higher than 1. The
value in awDepth[0] defines the size of the buffer for the first signal defined in pszSigs, the value
in awDepth[1] defines the size of the buffer for the second signal defined in pszSigs, etc.

static TCHAR szSignals[] = // buffer size | signal handle
//-------------+--------------

TEXT(″$pdu/PDU3/Signal4\0″) // awDepth[0] | ahSigId[0]
TEXT(″$pdu/PDU2/Signal2\0″) // awDepth[1] | ahSigId[1]
TEXT(″$pdu/PDU2/Signal6\0″) // awDepth[2] | ahSigId[2]
TEXT(″$pdu/PDU2/Signal5\0″) // awDepth[3] | ahSigId[3]
TEXT(″$pdu/PDU1/Signal3\0″) // awDepth[4] | ahSigId[4]
TEXT(″$pdu/PDU1/Signal1\0″) // awDepth[5] | ahSigId[5]

// ------------+--------------
TEXT(″\0″); // end of table

It is possible to create the same kind of buffer for all signals that are defined in pszSigs. Value
NULL in awDepth creates a simple buffer for each signal. To create a FIFO of the same size for
each signal, define a pointer value smaller 65536 in awDepth. The pointer value then defines the
buffer capacity of the FIFO.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 15 (58)

3.1.2 Converting Signal Values
Normally signal values are physical values. To be able to transfer the signals in messages and to
display and visualize the signals in applications, the values must be converted before and after
transmission. The rules how the signals are converted are set in the signal data base (FIBEX or
CANdb format). For the message transfer raw values are necessary and to display mostly physical
values are used.

► To convert physical values to raw values and vice versa call function Convert.

– In parameter dwMode define the converting mode.

– In parameter aInSig define a pointer to the array that contains the values to be
converted.

– In parameter dwCount define the number of elements in both arrays.

– Parameter aOutSig returns a pointer to the array that contains the converted values.

► For more information see parameter description in Convert, p. 35.

3.1.3 Reading Receive Signal Sets
To access a receive signal set from the application the interface IRSignalSet is used.

Fig. 8 Receive Signal Set

► Make sure that field hSigId of each element is initialized with the reference ID of the signal
to be read.

► To read the last received signal values from the internal buffer call function Read.

– In parameter fConvert define if raw values are converted in physical values (TRUE) or if
raw signals are delivered (FALSE).

– In parameter dwCount define the number of receive buffers to be read.

If run successfully:

→ Parameter aSignal points to the array where the read values are stored as elements of
type FSLSIGNAL. Field qwTime of each element contains the receive time. Field sValue
of each element contains the received signal value of the respective element.

→ Parameter adwRxCnt contains the number of each received signal value since the last
call of Read. If no signal was received the respective element is set to 0.

→ If an overrun and therefore data loss occurs in one of the FIFOs of the signal set or in
one of the upstream FIFOs, the receive counter of the respective signals is higher 1 and
the bit FSL_SIG_STAT_RXOVR in field dwStat of structure FSLSIGNAL is set.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 16 (58)

3.1.4 Writing Transmit Signal Sets
To access a transmit signal set from the application the interface ITSignalSet is used.

Fig. 9 Transmit signal set

► Make sure that field hSigId of each element in the array aSignal is initialized with the
reference ID of the signal to be written.

► To write signal values call function Write.

► For each buffer only one signal value can be written. To write several values a signal buffer
with a FIFO, call the function for each value.

– In parameter fConvert define if physical values are converted in raw values (TRUE) or if
the values to be transmitted are raw values (FALSE).

– With parameter afValid define which signal value is valid. If afValid[x] is TRUE, the
respective signal value is adopted in aSignal[x], if afValid[x] is FALSE the signal value
in aSignal[x] is ignored.

– If a FIFO is used, check if a signal value is adopted or not (if the FIFO is full) in
parameter afDone (FALSE: not transferred or invalid value).

– In parameter dwCount define the number of elements in the arrays aSignal, afValid,
and afDone.

If run successfully:

→ Signal values in the array the parameter aSignal is pointing to are transmitted in the
respective internal buffers.

3.1.5 Deactivating and Releasing the Signal Set
► To deactivate the signal set call function Disable.

→ Connection to message switch is interrupted.

Connection can be reestablished with function Enable.

► To deactivate and close the signal set call function CloseDB.

→ Signal set and the pointer to the interface are released. Pointer cannot be used
anymore.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 17 (58)

3.2 CAN Specific Communication

Fig. 10 Components of CAN message switch

3.2.1 Creating a Message Switch
► To create a message switch call function VciCreateCanMsgSwitch.

– In parameter pBalObj determine for which adapter the switch is created.

– In parameter dwBusNo determine the CAN connection to be used.

If run successfully:

→ Variable that points to parameter ppSwitch returns a pointer to the interface
ICanMsgSwitch of the message switch.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 18 (58)

3.2.2 Initializing and Activating the Message Switch
► Initialize the message switch with function Initialize.

– In parameter dwTiming determine the frequency of the distributor (how often the
distributor checks the clients for messages). See Temporal Accuracy, p. 18.

– In parameter IPriority determine the thread priority of the distributor (for more
information see parameter IPriority in Initialize).

– In parameter fExclusive determine if the CAN connection is used exclusively for the
message switch to be opened (TRUE) or if further switches or channels can be created
for the connection (FALSE) and the connection can be used by further applications.

– To create a receive FIFO and set the capacity, determine in parameter wRxFifoSize the
capacity of the receive FIFO in CAN messages of structure CANMSG2.

– To create a transmit FIFO and set the capacity, determine in parameter wTxFifoSize the
capacity of the receive FIFO in CAN messages of structure CANMSG2.

HMS recommends a capacity between 32 and 128.

→ Newly created message switch is initialized but inactive and not connected to the bus.

► Create clients for the message switch (see Creating and Initializing Clients: Message Sinks, p.
19 and Creating and Initializing Clients: Message Sources, p. 22).

A new message switch is inactive and not connected to the bus. Messages are only received and
transmitted if the switch is active.

► Make sure, that the CAN controller is in state online.

► Activate the message switch with function Activate.

If the switch is initialized and activated:

→ Distributor checks the clients for messages according to the defined frequency.

→ Messages received from the receive FIFO are transmitted event driven to clients with
active message sink.

→ If a free entry in the transmit FIFO is available, the distributor checks the clients for
messages to be transmitted.

Temporal Accuracy

How accurate the clients are served is dependent on the defined frequency and on the number
of active clients. The more clients have to be served, the longer is the cycle. The number of
events on the CAN channel also influence the accuracy. The more messages are transferred, the
more receive messages must be transmitted from the distributor to the active message sinks. A
higher load leads to a delay in the transmission of messages and therefore to a delay in the
checking of the message sources.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 19 (58)

3.2.3 Creating and Initializing Clients: Message Sinks
After initializing the message switch any number of clients can be created for the message switch.
Clients can be sinks, that receive CAN messages of a CAN channel via the message switch. CAN
specific message switches support different types of sinks: simple buffer, message queues,
message sets and signal sets. For more information see CAN Specific Components, p. 10.

Creating a Receive Message Buffer

For communication the interface ICanRMsgBuffer is used.

Fig. 11 CAN receive message buffer

► To create a receive message buffer, call function CreateClient with value IID_
ICanRMsgBuffer in parameter riid.

→ Parameter ppv returns a pointer to the interface ICanRMsgBuffer.

→ Newly created clients are not connected to the distributor of the message switch and
cannot receive messages.

► To connect the client to the distributor, initialize the client with function
ICanRMsgBuffer::Enable.

– In parameter dwCanId determine the CAN ID of the message to be filtered from the
received message stream.

If run successfully:

→ Message buffer is connected to the distributor of the message switch and receives
messages.

► Make sure that the message switch is initialized and activated (see Initializing and Activating
the Message Switch, p. 18).

► To read the messages from the receive buffer, call function Read.

→ Parameter pCanMsg points to the variable that stores the content of the buffer.

→ Parameter pdwRxCnt points to the variable that stores the current value of the receive
counter.

→ Receive counter is set to 0 with each call of Read and therefore shows the number of
overwritten messages since the last call.

→ If the overrun bit is set in a message, an overrun occurred in one of the upstream FIFOs.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 20 (58)

Creating a Receive Message Queue

For communication the interface ICanRMsgQueue is used.

Fig. 12 CAN receive message queue

► To create a receive message queue, call function CreateClient with value IID_
ICanRMsgQueue in parameter riid.

→ Parameter ppv returns a pointer to the interface ICanRMsgQueue.

→ Newly created clients are not connected to the distributor of the message switch and
cannot receive messages.

► To connect the client to the distributor, initialize the client with function
ICanRMsgQueue::Enable.

– In parameter dwCanId determine the CAN ID of the message to be filtered from the
received message stream.

– In parameter wDepth determine the size of the FIFO in number of CAN messages.

If run successfully:

→ Message queue is connected to the distributor of the message switch and receives
messages.

► Make sure that the message switch is initialized and activated (see Initializing and Activating
the Message Switch, p. 18).

► To read the messages from the receive buffer, call function Read.

– In parameter dwCount determine the number of CAN messages to be read and stored.

If run successfully:

→ Parameter aCanMsg points to the variable that stores the content of the buffer.

→ Parameter pdwDone points to the variable that stores the number of actually read
messages.

→ If the overrun bit is set in a message, an overrun occurred in the queue or in one of the
upstream FIFOs and data is lost.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 21 (58)

Creating a Receive Message Set

For communication the interface ICanRMsgSet is used.

Fig. 13 CAN receive message set

► To create a receive message set, call function CreateClient with value IID_
ICanRMsgSet in parameter riid.

→ Parameter ppv returns a pointer to the interface ICanRMsgSet.

→ Newly created clients are not connected to the distributor of the message switch and
cannot receive messages.

► To connect the client to the distributor, initialize the client with function ICanRMsgSet::
Enable.

– In the array the parameter adwCanId points to, determine the CAN IDs of the messages
to be filtered from the received message stream.

– In the element the parameter awDepth point to, determine the capacity of the
respective buffer (for more information see parameter description in Enable).

– In parameter dwCount determine the number of elements in both arrays dwCanId and
wDepth.

If run successfully:

→ Message set is connected to the distributor of the message switch and receives
messages.

► Make sure that the message switch is initialized and activated (see Initializing and Activating
the Message Switch, p. 18).

► To read the messages from the receive buffer, call function Read.

– In parameter dwFirst determine the 0 based start index and in parameter dwCount the
number of buffers to be read. Value must be equal or smaller than the number of
elements in the arrays aCanMsg or adwRxCnt.

If run successfully:

→ Parameter aCanMsg points to the variable that stores the last received messages from
the buffers.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 22 (58)

→ Parameter adwRxCnt points to the array that stores the number of received messages
in the respective buffer since the last call (with a queue the value is maximally 1, if
higher an overrun occurred).

→ If the overrun bit is set in a message, an overrun occurred in the queue or in one of the
upstream FIFOs and data is lost.

Creating a Receive Signal Set

For communication the interface IRSignalSet is used.

► To create a receive message set, call function CreateClient with value IID_
IRSignalSet in parameter riid.

→ Parameter ppv returns a pointer to the interface IRSignalSet.

→ Newly created clients are not connected to the distributor of the message switch and
cannot transmit or receive messages.

► To connect the client to the distributor, initialize the client with function LoadDB and
activate the signal set with function Enable. For more information see Accessing and
Initializing the Signal Set, p. 13.

► Make sure that the message switch is initialized and activated (see Initializing and Activating
the Message Switch, p. 18).

3.2.4 Creating and Initializing Clients: Message Sources
After initializing the message switch any number of clients can be created for the message switch.
Clients can be sources that transmit CAN messages to the message switch. CAN specific message
switches support different types of sources: simple buffer, message queues, message sets and
signal sets. For more information see CAN Specific Components, p. 10.

Creating a Transmit Message Buffer

For communication the interface ICanTMsgBuffer is used.

Fig. 14 CAN transmit message buffer

► To create a transmit message buffer, call function CreateClient with value IID_
ICanTMsgBuffer in parameter riid.

→ Parameter ppv returns a pointer to the interface ICanTMsgBuffer.

→ Newly created clients are not connected to the distributor of the message switch and
cannot transmit messages.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 23 (58)

► To connect the client to the distributor, initialize the client with function
ICanTMsgBuffer::Enable.

– In parameter dwCanId determine the CAN ID of the message to be accepted. Message
must be of type CAN_MSGTYPE_DATA and must have a valid CAN ID.

– In parameter dwMode determine the operation mode (direct, cyclically, delayed). For
more information see Cyclic and Delayed Transmission, p. 23.

– In parameter dwTime determine the cycle or delay time.

If run successfully:

→ Message buffer is connected to the distributor of the message switch and transmits
messages.

► Make sure that the message switch is initialized and activated (see Initializing and Activating
the Message Switch, p. 18).

► To transmit messages, call function Write with pointer of the message to be written in
parameter pCanMsg.

→ Message is written in the internal buffer.

→ In operation mode CAN_TX_DIRECT message is transmitted once directly to the
message switch.

→ In operation mode CAN_TX_DELAYED message is transmitted once to the message
switch when the delay time (dwTime) is expired.

→ In operation mode CAN_TX_CYCLIC message is transmitted cyclically (cycle time in
dwTime).

Cyclic and Delayed Transmission

With cyclic transmission it is possible to change the content of the buffer by calling Write
without changing the current cycle. The cyclic transmission is stopped when the client is
deactivated with Disable. The cyclic transmission can be disabled by writing a CAN message
with valid ID but with invalid value for field uMsgInfo.bType in the transmit buffer, e.g. 255 or
0xFF. Messages with invalid value are not of type CAN_MSG_DATA and are therefore ignored.

In cyclic transmission the first message is transmitted without delay, the next message is
transmitted after the time defined in dwTime. The cycle timer value is calculated by the
difference of current time (TC) and time of the last transmitted message (TP). The message is
transmitted when (TC-TP) ≥ dwTime.

The delay timer value is calculated by the difference of current time (TC) and calling time of
Write (TW). The message is transmitted when (TC-TW) ≥ dwTime.

The calculation is done by the distributor during the query of the message source and therefore
the accuracy is dependent on the frequency of the query. The defined frequency of the
distributor and the number of active clients are influencing factors. Another factor is the bus
load: the higher the bus load, the more inaccurate is the transmit time. Furthermore the query
interval is influenced by the performance of the computer and the priority of process and thread
of the message distributor. With a thread with normal or low priority the query interval is smaller
than with a thread with higher priority. To increase the query interval and reaction time of the
distributor, use a higher prioritized process and thread. The exact calculation of the processing
time is not possible, and therefore should be determined experimentally.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 24 (58)

Creating a Transmit Message Queue

For communication the interface ICanTMsgQueue is used.

Fig. 15 CAN transmit message queue

► To create a receive message queue, call function CreateClient with value IID_
ICanTMsgQueue in parameter riid.

→ Parameter ppv returns a pointer to the interface ICanTMsgQueue.

→ Newly created clients are not connected to the distributor of the message switch and
cannot transmit messages.

► To connect the client to the distributor, initialize the client with function
ICanTMsgQueue::Enable.

– In parameter dwCanId determine the CAN ID of the message to be accepted. Message
must be of type CAN_MSGTYPE_DATA and must have a valid CAN ID.

– In parameter wDepth determine the size of the FIFO in number of CAN messages.

– In parameter dwMode determine the operation mode (direct, cyclically, delayed). For
more information see Cyclic and Delayed Transmission, p. 23.

– In parameter dwTime determine the cycle or delay time.

If run successfully:

→ Message queue is connected to the distributor of the message switch and transmits
messages.

► Make sure that the message switch is initialized and activated (see Initializing and Activating
the Message Switch, p. 18).

► To transmit messages, call function Write.

– In parameter aCanMsg define pointer to array with the CAN messages to be written.

– In parameter dwCount determine the number of CAN messages to be transmitted.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 25 (58)

If run successfully:

→ Messages of the array are written in the internal FIFO.

→ Parameter pdwDone points to the variable that stores the number of actually written
messages.

→ In operation mode CAN_TX_DIRECT message is transmitted once directly to the
message switch.

→ In operation mode CAN_TX_DELAYED message is transmitted once to the message
switch when the delay time (dwTime) is expired. If the FIFO contains further messages
the timer is started again for the next message.

→ In operation mode CAN_TX_CYCLIC message is transmitted cyclically (cycle time in
dwTime).

Creating a Transmit Message Set

For communication the interface ICanTMsgSet is used.

Fig. 16 CAN transmit message set

► To create a receive message set, call function CreateClient with value IID_
ICanTMsgSet in parameter riid.

→ Parameter ppv returns a pointer to the interface ICanTMsgSet.

→ Newly created clients are not connected to the distributor of the message switch and
cannot transmit messages.

► To connect the client to the distributor, initialize the client with function ICanTMsgSet::
Enable.

– In parameter adwCanId determine the CAN ID of the message to be accepted by the
different buffers. Message must be of type CAN_MSGTYPE_DATA and must have a
valid CAN ID.

– In the element the parameter awDepth point to, determine the capacity of the
respective buffer (for more information see parameter description in Enable).

– In parameter adwMode determine the operation mode (direct, cyclically, delayed) of
the respective buffer. For more information see Cyclic and Delayed Transmission, p. 23.

– In parameter adwTime determine the cycle or delay time.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 26 (58)

– In parameter dwCount determine the number of elements in the arrays adwCanId,
awDepth, adwMode, and adwTime.

If run successfully:

→ Message set is connected to the distributor of the message switch and transmits
messages.

► Make sure that the message switch is initialized and activated (see Initializing and Activating
the Message Switch, p. 18).

► To transmit messages, call function Write.

► For each buffer only one message can be transmitted. To write several messages to a
queue, call the function for each message to be transmitted.

– In parameter aCanMsg define pointer to array with the CAN messages to be written.

– With parameter afValid define which message is valid. If afValid[x] is TRUE, the
respective message is adopted in aCanMsg[x], if afValid[x] is FALSE the message in
aCanMsg[x] is ignored.

– If a FIFO is used, check if a message is adopted or not (if the FIFO is full) in parameter
afDone (FALSE: not transferred or invalid value).

– In parameter dwFirst determine the 0 based start index and in parameter dwCount the
number of messages to be written. Value must be equal or smaller than the number of
elements in the array aCanMsg.

If run successfully:

→ Messages of the array are written in the respective internal buffers.

→ In operation mode CAN_TX_DIRECT message is transmitted once directly to the
message switch.

→ In operation mode CAN_TX_DELAYED message is transmitted once to the message
switch when the delay time (dwTime) is expired. If the FIFO contains further messages
the timer is started again for the next message.

→ In operation mode CAN_TX_CYCLIC message is transmitted cyclically (cycle time in
dwTime).

Creating a Transmit Signal Set

For communication the interface ITSignalSet is used.

► To create a receive message set, call function CreateClient with value IID_
ITSignalSet in parameter riid.

→ Parameter ppv returns a pointer to the interface ITSignalSet.

→ Newly created clients are not connected to the distributor of the message switch and
cannot transmit messages.

► To connect the client to the distributor, initialize the client with function LoadDB and
activate the signal set with function Enable. For more information see Accessing and
Initializing the Signal Set, p. 13.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Communication 27 (58)

3.2.5 Disconnecting Clients
► To deactivate and deregister a client, call function Disable of the respective interface.

The client can be reconnected with Enable.

or

► To release the client, call function Release. The client is disconnected and the pointer is
invalid and cannot be used anymore.

► To disconnect a client only temporarily (stays registered), call function DetachClient.

► To connect the client again, call function AttachClient.

A client is not exclusively assigned to the message switch it was created with, but can also be
assigned to another message switch. A client can only be assigned to one message switch, not to
several message switches simultaneously. To be able to reassign a client, the client must be
connected to the message switch it was created with.

To reassign a client from message switch A to message switch B:

► Disconnect the client from message switch A: DetachClient at A.

► Connect the client to message switch B: AttachClient at B.

Functions Enable and Disable are not possible to use after reassigning of a client,
because they are internally linked to the message switch the client was created with.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 28 (58)

4 API Functions
4.1 Exported Functions

The declaration of the exported interfaces and functions are in the file vcifsl.h.

4.1.1 VciCreateCanMsgSwitch
Creates a message switch for a CAN connection.

HRESULT VCIAPI VciCreateCanMsgSwitch (
IBalObject* pBalObj
UINT32 dwBusNo
ICanMsgSwitch* ppSwitch);

Parameter
Parameter Dir. Description

pBalObj [in] Pointer to bus access layer (BAL) component of the CAN connection

dwBusNo [in] Number of bus connection to be opened. Value 0 selects bus connection
1, value 1 selects bus connection 2 etc. Entered value must match a CAN
connection. See description of data structure BALFEATURES in VCI: C
++ Software Design Guide.

ppSwitch [out] Address of a pointer variable. If run successfully the parameter saves the
pointer to the interface ICanMsgSwitch of the newly created
message switch. In case of an error the variable is set to NULL.

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

If run successfully the function increments the reference counter of the bus connection
automatically by 1. When the application does not need the message switch anymore, the
pointer returned in ppSwitch must be released with function Release.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 29 (58)

4.2 Interface IUnknown
All components provided by the VCI implement the interface IUnknown that is specified in the
Component Object Model of Microsoft (MS-COM). The interface provides the function
QueryInterface to request further interfaces of the component, and additionally the
functions AddRef resp. Release to control the lifespan of the component.

4.2.1 QueryInterface
Calls a particular interface of a component.

ULONG QueryInterface (REFIID riid, PVOID *ppv);

Parameter
Parameter Dir. Description
riid [in] Reference to the ID of the interface to access the component.
ppv [out] Address of a pointer variable. If run successfully the pointer is stored in the in riid

requested interface. In case of an error the variable is set to NULL.

Return Value
Return value Description
VCI_OK Function succeeded
!=VCI_OK Error, more information about error code provides the function VciFormatError

Remark

If run successfully the function increments the reference counter of the component
automatically by 1. When the application does not need the interfaces resp. the components
anymore, the pointer returned in ppv must be released with Release.

4.2.2 AddRef
Increments the reference counter of the component by 1.

ULONG AddRef (void);

Return Value

Function returns the current value of the reference counter.

Remark

The function always must be called, if the application stores a copy of the interface pointer. This
ensures that the component exists as long as the last reference to it is released. An interface resp.
the connected component is released by the call of the function Release.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 30 (58)

4.2.3 Release
Decrements the reference counter of the component by 1. If the reference count falls to 0, the
component is released.

ULONG Release (void);

Return Value

Function returns the current value of the reference counter.

Remark

After calling the function the pointer to the interface used by the application is not valid
anymore and must not be used anymore. This also applies if the function returns a value lager
than 0, i. e. the component itself is not released by this call.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 31 (58)

4.3 Signal Specific Interfaces
4.3.1 ISignalSet

The interface defines the common functions to access the signal sets. The interface can only be
opened in combination with one of the interfaces IRSignalSet or ITSignalSet.

LoadDB

Opens a signal data base (ANSI version or WideChar version) and initializes the signal set with
the defined signals.

HRESULT LoadDBA (
PCHAR pszFile,
PCHAR pszPara,
PCHAR pszSigs,
UINT16 awDepth[],
HANDLE ahSigId[],
UINT32 dwCount);

HRESULT LoadDBW (
PWCHAR pszFile,
PWCHAR pszPara,
PWCHAR pszSigs,
UINT16 awDepth[],
HANDLE ahSigId[],
UINT32 dwCount);

Parameter
Parameter Dir. Description

pszFile [in] Pointer to 0-terminated character string that contains file name and
optional path of the signal data base to be opened

pszPara [in] Pointer to 0-terminated character string with additional parameters,
optional, can be NULL. Specify the data base specific parameters as
value pair keyword=value (case sensitive). Separate value pairs with
semicolon. The following keywords are currently defined:
cluster: select network, as value enter the name of the cluster that is
defined in the data base, the name is a short name of the cluster that is
called SHORT-NAME in the FIBEX file, e.g. cluster=CAN1 selects the
network named CAN1
channel: select transmission channel, as value enter the name of the
channel that is defined in the data base, defining a transmission channel
is only necessary with FlexRay, with CAN and LIN channel is optional,
because there is only one transmission channel
invalsigvals: define if invalid signal values are accepted or if not,
invalsigval=1 accepts invalid signals, invalsigval=0 ignores invalid signals

pszSigs [in] Pointer to buffer that contains one or more 0-terminated character
strings with the names of the signals to be loaded. Last entry in the
buffer must be an empty character string (“\0”). Select only signals that
refer to the selected network and if determined, the selected channel
(in pszPara). Signals that refer to other networks or channels are
ignored.

awDepth [in] Array that defines the capacity of the signal buffer in number of entries
of type FSLSIGNAL. To create a simple buffer for an individual signal
that is defined in pszSigs, define value 0 or 1 in the array. To create a
FIFO for an individual signal define a value higher than 1. The value in
awDepth[0] defines the size of the buffer for the first signal defined in
pszSigs, the value in awDepth[1] defines the size of the buffer for the
second signal defined in pszSigs, etc.
It is possible to create the same kind of buffer for all signals that are
defined in pszSigs. Value NULL creates a simple buffer for each signal.
To create a FIFO of the same size for each signal, define a pointer value
smaller 65536. The pointer value then defines the buffer capacity of the
FIFO.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 32 (58)

Parameter Dir. Description

ahSigId [out] Pointer to an array for the reference IDs of the loaded signals. If a signal
name that is defined in pszSigs is missing in the data base, the
corresponding array element is set to NULL.

dwCount [in] Number of elements in the array ahSigId and if defined in the array
awDepth. The value must match the number of character strings that
are defined in pszSig (without the empty terminating string). If the value
is smaller the function cannot generate buffer for all signals.

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

CloseDB

Deactivates the signal set and closes the currently opened signal data base.

HRESULT CloseDB (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function deregisters the signal set from the distributor of the message switch.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 33 (58)

GetAttr

Retrieves the current value of a signal attribute (ANSI version or WideChar version).

HRESULT GetAttrA (
HANDLE hSigId,
UINT32 dwAttr,
PVOID pvData,
UINT32 dwSize,
PUINT32 pdwOut);

HRESULT GetAttrW (
HANDLE hSigId,
UINT32 dwAttr,
PVOID pvData,
UINT32 dwSize,
PUINT32 pdwOut);

Parameter
Parameter Dir. Description

hSigId [in] Reference ID of the signal

dwAttr [in] Typ of attribute to be retrieved, the following constants are possible:

FSL_SIG_
ATTR_NAME

Name of the signal

FSL_SIG_
ATTR_UNIT

Unit of the signal value (not implemented)

FSL_SIG_
ATTR_DLID

ID of the default language (signal specific implementation is not
supported)

FSL_SIG_
ATTR_PLID

ID of the preferred language (signal specific implementation is not
supported)

pvData [out] Pointer to buffer area where the function stores the data of the requested attribute. If
value NULL is defined, parameter pdwOut returns the necessary capacity of the buffer
area in number of bytes.

dwSize [in] Capacity of the buffer area in Byte to which the parameter pvData points. The size is only
relevant, if in pvData a value unequal NULL is defined.

pdwOut [out] If the function is run successfully, a pointer to a variable is returned that stores the
number of data bytes that are copied to the buffer area to which the parameter pvData
points.

Return Value
Return value Description

VCI_OK Function succeeded

VCI_E_NOT_IMPLEMENTED Attribute not supported

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

To determine what size is necessary for the data of the attribute, call the function with value
NULL in pvData. The variable to which the parameter pdwOut points, returns the necessary
capacity in number of bytes.

If value NULL is determined for hSigId and either FSL_SIG_ATTR_DLID or FSL_SIG_ATTR_
PLID for dwAttr the function returns the current language ID of the data base.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 34 (58)

SetAttr

Updates the value of a signal attribute (ANSI version or WideChar version).

HRESULT SetAttrA (
HANDLE hSigId,
UINT32 dwAttr,
PVOID pvData,
UINT32 dwSize);

HRESULT SetAttrW (
HANDLE hSigId,
UINT32 dwAttr,
PVOID pvData,
UINT32 dwSize);

Parameter
Parameter Dir. Description

hSigId [in] Reference ID of the signal

dwAttr [in] Typ of attribute to be updated, the following constants are possible:

FSL_SIG_
ATTR_NAME

Name of the signal (not implemented)

FSL_SIG_
ATTR_UNIT

Unit of the signal value (not implemented)

FSL_SIG_
ATTR_DLID

ID of the default language (signal specific implementation is not
supported)

FSL_SIG_
ATTR_PLID

ID of the preferred language (signal specific implementation is not
supported)

pvData [in] Pointer to buffer area with the new data values

dwSize [in] Capacity of the buffer area in byte to which the parameter pvData points. For the
attributes FSL_SIG_ATTR_NAME and FSL_SIG_ATTR_UNIT the value can be
calculated as follows: (length of character string+1)* size of one character.

Return Value
Return value Description

VCI_OK Function succeeded

VCI_E_NOT_IMPLEMENTED Attribute not supported

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

If hSigId is set to NULL and either FSL_SIG_ATTR_DLID or FSL_SIG_ATTR_PLID is set for
dwAttr, the language ID is set for all signals in the set.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 35 (58)

Convert

Converts the defined signal values from raw values to physical values or from physical values to
raw values.

HRESULT Convert (
UINT32 dwMode,
FSLSIGNAL aInSig[]
FSLSIGNAL aOutSig[]
UINT32 dwCount);

Parameter
Parameter Dir. Description

dwMode [in] Conversion mode, the following constants are possible:

FSL_SIG_CONV_RAWTOPHYS Converts raw values to physical values.

FSL_SIG_CONV_PHYSTORAW Converts physical values to raw values.

alnSig [in] Pointer to array with elements of type FSLSIGNAL. Before calling, the fields hSigId of the
elements must be initialized with the reference ID of the signal and the fields sValue must
be initialized with valid signal values according to the set mode.

aOutSig [out] Pointer to an array for the converted values. If the values in array aInSig are not needed
anymore after calling the function, it is possible that aOutSig points to the same array as
aInSig. Then the values are converted directly there.

dwCount [in] Number of elements in arrays aInSig and aOutSig

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

If the conversion is not successful the bit SSL_SIG_STAT_GFAIL in field dwStat in structure
FSLSIGNAL is set. If the conversion is successful the bit is deleted.

Enable

Activates the signal set.

HRESULT Enable (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The functions registers the signal set at the distributor of the message switch.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 36 (58)

Disable

Deactivates the signal set.

HRESULT Disable (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The functions deregisters the signal set from the distributor of the message switch.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 37 (58)

4.3.2 IRSignalSet
The interface extends the basic interface ISignalSet with functions to access the receive
signal set. VciCreateCanMsgSwitch returns a pointer to the CAN specific implementation
of the interface. The ID IID_IRSignalSet must be used.

Read

Reads the received signal values from the buffers of the receive signal set.

HRESULT Read (
BOOL fConvert,
FSLSIGNAL aSignal[],
UINT32 adwRxCnt[],
UINT32 dwCount);

Parameter
Parameter Dir. Description

fConvert [in] TRUE: function converts raw signal values in physical values when
reading.
FALSE: function delivers raw signal values (e.g. for data logging). Values
are only buffered, not interpreted. Reading process is faster without
converting. The physical values can be calculated with
Convert
from the buffered raw values any time.

aSignal [in/out] Pointer to array with elements of type FSLSIGNAL. Before calling, the
fields hSigId of the elements must be initialized with the reference ID of
the signal to be read. If run successfully the functions stores the
receiving time in file qwTime and the received signal value in field
sValue of the respective element.

adwRxCnt [out] Pointer to array of type UINT32. If run successfully the function stores
the number of each received signal value since the last call of the
function. If no signal was received the respective element is set to 0.
The array must have at least the capacity of dwCount. If the information
is not needed, define value NULL.

dwCount [in] Number of receive buffers to be read. Value must be equal or smaller
than the number of elements in the arrays aSignal or adwRxCnt.

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

If no message is received in the receive buffer until the first call or between two subsequent calls
of the function, the function returns the value 0 in the respective array element of adwRxCnt.
The receive time of a signal is the receive time of the message that contains the signal. Therefore
the format of the timestamp is the same format as in the message.

If an overrun occurs in one of the FIFOs of the signal set or in one of the upstream FIFOs, the
receive counter of the respective signals is higher 1 and the bit FSL_SIG_STAT_RXOVR in field
dwStat of structure FSLSIGNAL is set.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 38 (58)

4.3.3 ITSignalSet
Write

Writes the signal values to the buffers of the transmit signal set.

HRESULT Write (
BOLL fConvert
FSLSIGNAL aSignal[],
BOOL8 afValid[],
BOOL8 afDone[],
UINT32 dwCount);

Parameter
Parameter Dir. Description

fConvert [in] TRUE: function converts physical values in raw signal values before
transmitting.
FALSE: the values to be transmitted are raw values. Writing process is
faster without converting. The raw values can be calculated with
Convert
before calling Write.

aSignal [out] Pointer to array with the signals to be written. Before calling, the fields
hSigId of the elements must be initialized with the reference ID of the
signal to be written. Field qwTime is ignored. Dependent on the settings
in fConvert (TRUE or FALSE) field sValue must contain the physical
value or the raw value.

afValid [in] Pointer to array that defines if the value of a signal in the array aSignal
is valid and ready for transmission. Element afValid[x] must be TRUE to
adopt the signal value in signal aSignal[x]. If afValid[x] is FALSE the
signal value is not adopted.

afDone [out] Pointer to array of type BOOL8. If run successfully the function sets the
individual elements to TRUE or FALSE, depending if the respective
signal value is written in the corresponding transmit buffer of not. If the
information is not needed, define value NULL.

dwCount [in] Number of signal values to be written. Value must be smaller than the
number of elements in the arrays aSignal, afValid and optionally afDone.

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 39 (58)

4.4 CAN Specific Interfaces
4.4.1 Message Switch: ICanMsgSwitch

The interface is used to access the message switch. VciCreateCanMsgSwitch returns a
pointer to the interface. The ID is IID_ICanMsgSwitch.

Initialize

Initializes the distributor thread and CAN message channel of the message switch with the
defined parameters.

HRESULT Initialize (
UINT32 dwTiming
INT32 lPriority
BOOL fExclusiv
UINT16 wRxFifoSize
UINT16 wTxFifoSize);

Parameter
Parameter Dir. Description

dwTiming [in] Cycle time of the message distributor in milliseconds. Defines the
minimal cycle time of the individual message sources.

IPriority [in] Priority of the message distributor, possible values: THREAD_
PRIORITY_NORMAL (for non time critical applications), THREAD_
PRIORITY_ABOVE_NORMAL, THREAD_PRIORITY_HIGHEST (for
time critical applications), THREAD_PRIORITY_TIME_CRITICAL
(highest priority)
Observe the priority class of the process that is created by the message
switch. Create this priority class with Windows API function
SetPriorityClass. For more information see Windows API function
documentation.

fExclusive [in] Defines if the CAN connection is used exclusively by the message switch
to be opened. If TRUE is defined no other message channels can be
opened after successful call of the function until the channel is released
again. If FALSE is defined further message channels can be opened for
the CAN connection.

wRxFifoSize [in] Capacity of receive FIFO in number of CAN messages of structure
CANMSG2

wTxFifoSize [in] Capacity of transmit FIFO in number of CAN messages of structure
CANMSG2

Return Value
Return value Description

VCI_OK Function succeeded

VCI_E_ACCESSDENIED Connection can not be used, because another application uses the connection
exclusively.

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 40 (58)

Activate

Activates the message switch and starts the message distributor.

HRESULT Activate (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

After creating or initializing the message switch is per default deactivated and disconnected from
the bus. To connect the message channel of the switch with the bus, the switch must be
activated. Then messages can be transmitted to the bus and received from the bus. The CAN
controller must be in status online. For more information see VCI: C++ Software Design Guide in
chapter CAN Controller.

Deactivate

Stops the message distributor and deactivates the message channel to the CAN connection.

HRESULT Activate (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

When the message distributor is deactivated, it is not possible to transmit messages to the CAN
bus and the CAN bus does not receive any messages.

ForceReceive

Triggers the message distributor as if a message is received in the receive FIFO of the message
channel.

HRESULT ForceReceive (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 41 (58)

ForceTransmit

Triggers the message distributor as if a message is transmitted from the transmit FIFO of the
message channel.

HRESULT ForceTransmit (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

GetStatus

Gets the status of the message switch, message channel and CAN controller.

HRESULT GetStatus (PCANMSGSWITCHSTATUS pStatus);

Parameter
Parameter Dir. Description

pStatus [out] Pointer to a buffer area of type CANMSGSWITCHSTATUS. If run
successfully the function stores the current state of the message switch,
message channel and CAN controller in the buffer area.

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function can be called anytime, even before calling Initialize. For more information see
description of structure CANMSGSWITCHSTATUS.

GetControl

Opens the control unit of the connection the message switch is connected to.

HRESULT GetControl (PCANCONTROL2* ppCanCtrl);

Parameter
Parameter Dir. Description

ppCanCtrl [out] Address of variable that gets a pointer to the interface ICanControl2
if run successfully. Pointer is allocated by the opened control unit. In
case of an error the variable is set to NULL.

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 42 (58)

Remark

The control unit of a connection can exclusively be opened once by one application at a time. If
the control unit is not needed anymore, the pointer delivered in ppCanCtrl must be released by
calling Release.

CreateClient

Creates a client for the message switch.

HRESULT CreateClient (REFIID riid, PVOID* ppv);

Parameter
Parameter Dir. Description

riid [in] ID of the interface of the client that is to be created. The following IDs
are possible: IID_ICanRMsgBuffer, IID_ICanRMsgQueue, IID_
ICanRMsgSet, IID_ICanTMsgBuffer, IID_ICanTMsgQueue,
IID_ICanTMsgSet, IID_ICanRSignalSet, IID_
ICanTSignalSet

ppv [out] Address of the variable to which the pointer to the desired interface of
the newly created client is allocated if the function is run successfully. In
case of an error the variable is set to NULL.

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

A newly created client must be initialized and activated before being able to receive messages or
to transmit messages.

AttachClient

Registers a client at the distributor of the message switch.

HRESULT AttachClient (IUnknown* pClient);

Parameter
Parameter Dir. Description

pClient [in] Pointer to interface IUnknown of the client that is to be registered at
the distributor

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The client must be registered at the distributor before being able to receive or transmit
messages. The client registers automatically at the distributor when function Enable of the
client is called. For more information see <(2.1.4 link)>.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 43 (58)

DetachClient

Deregisters a client from the distributor of the message switch.

HRESULT DetachClient (IUnknown* pClient);

Parameter
Parameter Dir. Description

pClient [in] Pointer to interface IUnknown of the client that is to be deregistered
from the distributor

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The client deregisters automatically from the distributor when function Disable of the client is
called or if the client is removed by calling Release. For more information see <(2.1.4 link)>.

4.4.2 Message Sink: ICanRMsgBuffer
The interface is a supported sink for CAN messages that are received by the bus. The ID of the
interface is IID_ICanRMsgBuffer.

Enable

Initializes and activates the receive buffer.

HRESULT Enable (UINT32 dwCanId);

Parameter
Parameter Dir. Description

dwCanId [in] ID of the CAN message the receive buffer is intended for

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function registers the receive buffer at the distributor of the message switch with an internal
call of ICanMsgSwitch::AttachClient.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 44 (58)

Disable

Deactivates the receive buffer.

HRESULT Disable (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function deregisters the receive buffer at the distributor of the message switch with an
internal call of ICanMsgSwitch::DetachClient.

Read

Reads the last received CAN messages from the receive buffer.

HRESULT Read (PCANMSG2 pCanMsg, PUINT32 pdwRxCnt);

Parameter
Parameter Dir. Description

pCanMsg [out] Pointer to buffer area of type CANMSG2. If run successfully the last
received message is buffered in the defined area.

pdwRxCnt [out] Pointer to variable of type UINT32. If run successfully number of
messages received since the last call of the function are buffered here.

Return Value
Return value Description

VCI_OK Function succeeded

VCI_E_INVALID_STATE No message with defined CAN ID received

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 45 (58)

4.4.3 Message Sink: ICanRMsgQueue
The interface is a supported sink for CAN messages that are received by the bus. The ID of the
interface is IID_ICanRMsgQueue.

Enable

Initializes and activates the receive queue.

HRESULT Enable (UINT32 dwCanId, UINT16 wDepth);

Parameter
Parameter Dir. Description

dwCanId [in] ID of the CAN message the receive queue is intended for

wDepth [in] Capacity of receive queue in number of CAN messages

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function registers the receive queue at the distributor of the message switch with an internal
call of ICanMsgSwitch::AttachClient.

Disable

Deactivates the receive queue.

HRESULT Disable (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function deregisters the receive buffer at the distributor of the message switch with an
internal call of ICanMsgSwitch::DetachClient.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 46 (58)

Read

Reads one or more received CAN messages from the receive queue.

HRESULT Read (
CANMSG2 aCanMsg[],
UINT32 dwCount
PUINT32 pdwDone);

Parameter
Parameter Dir. Description

aCanMsg [out] Pointer to buffer area of type CANMSG2. If run successfully received
messages are buffered in the defined area.

dwCount [in] Capacity of array aCanMsg in number of CAN messages

pdwDone [out] Pointer to variable of type UINT32. If run successfully number of read
messages is buffered.

Return Value
Return value Description

VCI_OK Function succeeded

VCI_E_RXQUEUE_EMPTY No message with defined CAN ID received

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 47 (58)

4.4.4 Message Sink: ICanRMsgSet
The interface is a supported sink for CAN messages that are received by the bus. The ID of the
interface is IID_ICanRMsgSet.

Enable

Initializes and activates the receive message set.

HRESULT Enable (
UINT32 adwCanId[],
UINT16 awDepth[],
UINT32 dwCount);

Parameter
Parameter Dir. Description

adwCanId [in] Array of CAN IDs

awDepth [in] Array with capacity of the buffer in number of CAN messages. If an
element of the array is higher 1, a FIFO is created for the message with
the respective number of messages. If the element is smaller 1 a simple
buffer is created. The value in awDepth[0] defines the size of the buffer
for the CAN ID defined in adwCanId[0], the value in awDepth[1] defines
the size of the buffer for the CAN ID defined in adwCanId[1], etc.
Value NULL creates a simple buffer for each message that is defined in
adwCanId. If the pointer value is smaller 65536 a FIFO of the same size
is created for each defined message. The pointer value then defines the
buffer capacity of the FIFO.

dwCount [in] Number of elements in the arrays that are specified in adwCanId and
awDepth

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function registers the receive message set at the distributor of the message switch with an
internal call of ICanMsgSwitch::AttachClient.

Disable

Deactivates the receive message set.

HRESULT Disable (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function deregisters the receive message set at the distributor of the message switch with an
internal call of ICanMsgSwitch::DetachClient.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 48 (58)

Read

Reads the last received message of each individual buffer of the receive message set.

HRESULT Read (
CANMSG2 aCanMsg[],
UINT32 adwRxCnt[],
UINT32 dwFirst,
UINT32 dwCount);

Parameter
Parameter Dir. Description

aCanMsg [out] Pointer to buffer area of type CANMSG2. If run successfully the last
received message is buffered in the defined area. If value NULL is
defined, the next message in the receive buffers is removed and the
receive counter is reset.

adwRxCnt [out] Pointer to array of type UINT32. If run successfully the last received
messages are buffered in the defined area. If the information is not
needed, define value NULL.

dwFirst [in] Index of first receive buffer in the message set. Value must be smaller
than the value of dwCount when calling Enable.

dwCount [in] Number of receive buffers to be read. Value must be equal or smaller
than the number of elements in the arrays aCanMsg or adwRxCnt.

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

If no message is received until the first call or between two subsequent calls, the function
returns 0 in the array element of adwRxCnt.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 49 (58)

4.4.5 Message Source: ICanTMsgBuffer
The interface is a supported sink for CAN messages that are transmitted by the bus. The ID of the
interface is IID_ICanTMsgBuffer.

Enable

Initializes and activates the transmit buffer.

HRESULT Enable (
UINT32 dwCanId,
UINT32 dwMode,
UINT32 dwTime);

Parameter
Parameter Dir. Description

dwCanId [in] ID of the CAN message accepted by the buffer. Value 0xFFFFFF selects
the CAN ID of the message that is currently stored in the internal buffer.

dwMode [in] Operation mode of transmit buffer:

CAN_TX_DIRECT:
CAN_TX_CYCLIC:
CAN_TX_DELAYED:

Messages are directly transmitted during
writing.
Message in transmit buffer is transmitted
cyclically.
Messages are transmitted delayed.

dwTime [in] Cycle time or delay time of transmit buffer in milliseconds

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function registers the transmit buffer at the distributor of the message switch with an
internal call of ICanMsgSwitch::AttachClient.

Disable

Deactivates the transmit buffer.

HRESULT Disable (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function deregisters the transmit buffer at the distributor of the message switch with an
internal call of ICanMsgSwitch::DetachClient.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 50 (58)

Write

Writes a CAN message to the transmit buffer.

HRESULT Enable (PCANMSG2 pCanMsg);

Parameter
Parameter Dir. Description

pCanMsg [in] Pointer to the message to be written

Return Value
Return value Description

VCI_OK Function succeeded

VCI_E_INVALID_STATE No message with defined CAN ID received

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 51 (58)

4.4.6 Message Source: ICanTMsgQueue
The interface is a supported sink for CAN messages that are transmitted by the bus. The ID of the
interface is IID_ICanTMsgQueue.

Enable

Initializes and activates the transmit queue.

HRESULT Enable (
UINT32 dwCanId,
UINT16 wDepth
UINT32 dwMode,
UINT32 dwTime);

Parameter
Parameter Dir. Description

dwCanId [in] ID of the CAN message the transmit queue is intended for. Value 0xFFFFFF
selects the CAN ID of the messages that are currently in the FIFO.

wDepth [in] Capacity of transmit queue in number of CAN messages

dwMode [in] Operation mode of transmit queue:

CAN_TX_DIRECT:
CAN_TX_CYCLIC:
CAN_TX_DELAYED:

Messages are transmitted directly during
writing.
Messages in the queue are transmitted
cyclically.
Messages in the queue are transmitted
delayed.

dwTime [in] Cycle or delay time in milliseconds

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function registers the receive queue at the distributor of the message switch with an internal
call of ICanMsgSwitch::AttachClient.

Disable

Deactivates the transmit queue.

HRESULT Disable (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function deregisters the receive buffer at the distributor of the message switch with an
internal call of ICanMsgSwitch::DetachClient.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 52 (58)

Write

Writes one or more CAN messages in the transmit queue.

HRESULT Write (
CANMSG2 aCanMsg[],
UINT32 dwCount
PUINT32 pdwDone);

Parameter
Parameter Dir. Description

aCanMsg [in] Pointer to array with the CAN messages to be transmitted

dwCount [in] Number of the CAN messages to be transmitted

pdwDone [out] Pointer to variable of type UINT32. If run successfully number of
transmitted messages is buffered.

Return Value
Return value Description

VCI_OK Function succeeded

VCI_E_TXQUEUE_FULL Not all messages written

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 53 (58)

4.4.7 Message Source: ICanTMsgSet
The interface is a supported sink for CAN messages that are transmitted by the bus. The ID of the
interface is IID_ICanTMsgSet.

Enable

Initializes and activates the transmit message set.

HRESULT Enable (
UINT32 adwCanId[],
UINT16 awDepth[],
UINT32 adwMode[],
UINT32 adwTime[],
UINT32 dwCount);

Parameter
Parameter Dir. Description

adwCanId [in] Array of CAN IDs. Value 0xFFFFFF selects the CAN ID of the messages that are
currently in the buffer or in the queue.

awDepth [in] Array with capacity of the buffer in number of CAN messages. If an element of the
array is higher 1, a FIFO is created for the message with the respective number of
messages. If the element is smaller 1 a simple buffer is created. The value in
awDepth[0] defines the size of the buffer for the CAN ID defined in adwCanId[0],
the value in awDepth[1] defines the size of the buffer for the CAN ID defined in
adwCanId[1], etc.
Value NULL creates a simple buffer for each message that is defined in adwCanId.
If the pointer value is smaller 65536 a FIFO of the same size is created for each
defined message. The pointer value then defines the buffer capacity of the FIFO.

adwMode [in] Array with operation mode of the buffers. For each buffer one of the following
operation modes is possible:

CAN_TX_DIRECT:
CAN_TX_CYCLIC:
CAN_TX_DELAYED:

Messages in the buffer are directly
transmitted during writing.
Messages in the buffer are transmitted
cyclically.
Messages in the buffer are transmitted
delayed.

adwTime [in] Array with cycle or delay time of the buffers milliseconds

dwCount [in] Capacity of message set, number of elements that are specified in the arrays
adwCanId, awDepth, adwMode, and adwTime

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function registers the transmit message set at the distributor of the message switch with an
internal call of ICanMsgSwitch::AttachClient.

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

API Functions 54 (58)

Disable

Deactivates the transmit message set.

HRESULT Disable (void);

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

Remark

The function deregisters the transmit message set at the distributor of the message switch with
an internal call of ICanMsgSwitch::DetachClient.

Write

Writes CAN messages in the transmit buffers of the message set.

HRESULT Write (
CANMSG2 aCanMsg[],
BOOL8 afValid[],
BOOL8 afDone[],
UINT32 dwFirst,
UINT32 dwCount);

Parameter
Parameter Dir. Description

aCanMsg [in] Pointer to array with CAN messages to be written

afValid [in] Pointer to array that shows if a message in the array aCanMsg is valid or
not. If afValid[x] is TRUE the message in element aCanMsg[x] is written
in the corresponding transmit buffer. If afValid[x] is FALSE the message
is not adopted.

afDone [out] Pointer to array of type BOOL8. If run successfully each element is set
to either TRUE or FALSE depending if the message is written in the
internal transmit buffer or not. If the information is not needed, define
value NULL.

dwFirst [in] Index of first transmit buffer in the message set. The value must be
smaller than the value of dwCount when calling Enable.

dwCount [in] Number of messages to be written. Value must be smaller than the
number of elements in the arrays aCanMsg, afValid, and optionally
afDone.

Return Value
Return value Description

VCI_OK Function succeeded

!=VCI_OK Error, more information about error code provides the function
VciFormatError

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Data Structures 55 (58)

5 Data Structures
5.1 CAN Specific Data Types
5.1.1 CANMSGSWITCHSTATUS

The data type describes the current state of a CAN message switch.

typedef struct _CANMSGSWITCHSTATUS
{

CANCHANSTATUS2 sChanStatus;
UINT32 dwRxClients;
UINT32 dwTxClients;
UINT8 bWorkLoad;

} CANMSGSWITCHSTATUS, *PCANMSGSWITCHSTATUS;

Member Dir. Description

sChanStatus [out] Current state of CAN message channel, for more descriptions see VCI: C++ Software
Design Guide.

dwRxClients [out] Current number of attached message sinks (RX clients)

dwTxClients [out] Current number of attached message sources (TX clients)

bWorkLoad [out] Current load of message distributor in percent (0 to 100)

5.2 Signal Specific Data Types
5.2.1 FSLVAR

The data type describes the structure of a signal variable. The buffer layout of the structure is
binary compatible to the 32 bit version of the Windows data type VARIANT. The 64 bit version
of the Windows data type VARIANT is 8 byte bigger. This version reserves space for 2 pointers
with each 8 byte in the union and therefore includes 24 bytes instead 16 bytes.

typedef struct _FSLVAR
{

UINT16 wVarType;
UINT16 _rsvd1_;
UINT16 _rsvd2_;
UINT16 _rsvd3_;
union
{

FSL_BOOL asBool;
FSL_INT8 asInt8;
FSL_UINT8 asUInt8;
FSL_INT16 asInt16;
FSL_UINT16 asUInt16;
FSL_INT32 asInt32;
FSL_UINT32 asUInt32;
FSL_INT64 asInt64;
FSL_UINT64 asUInt64;
FSL_INT32 asInt;
FSL_UINT32 asUInt;
FSL_SINGLE asSingle;
FSL_DOUBLE asDouble;
FSL_BSTR asBStr;

};
} FSLVAR, *PFSLVAR;

Member Dir. Description

wVarType [out] Data type of the variant, the following values are possible

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

Data Structures 56 (58)

Member Dir. Description

FSL_VT_EMPTY Empty, no data

FSL_VT_BOOL Boolean (0 = FALSE, 1 = TRUE)

FSL_VT_INT8, FSL_VT_
UINT8

Signed or unsigned 8 bit integer

FSL_VT_INT16, FSL_
VT_UINT16

Signed or unsigned 16 bit integer

FSL_VT_INT,FSL_VT_
INT32, FSL_VT_UINT,
FSL_VT_UINT32

Signed or unsigned 32 bit integer

FSL_VT_INT64, FSL_
VT_UINT64

Signed or unsigned 64 bit integer

FSL_VT_SINGLE 32 bit floating point

FSL_VT_DOUBLE 64 bit floating point

FSL_VT_BSTR Pointer to a BSTR whose buffer is reserved with one of the
Windows API functions SysAllocString, SysAllocStringByteLen,
SysAllocStringLen, SysReAllocString or SysReAllocStringLen and
released with SysFreeString.

rsvd1
, _rsvd2_,
rsvd3

[out] Reserved, not used

asBool,
asInt8,
asUInt8,
asInt16,
asUInt16,
asInt32,
asUInt32,
asInt64,
asUInt64,
asInt,
asUInt,
asSingle,
asDouble,
asBStr

[in/out] Value of the variant, value range is determined by data type that is defined in field wVarType

5.2.2 FSLSIGNAL
The data type describes the structure of a signal.

typedef struct _FSLSIGNAL
{

HANDLE hSigId;
UINT64 qwTime;
UINT32 dwStat;
FSLVAR sValue;

} FSLSIGNAL, *PFSLSIGNAL;

Member Dir. Description

hSigId [in] Signal ID, the ID of a signal is returned by LoadDB.

qwTime [out] Receive time of signal

dwStat [out] Signal status flags, value is a logical combination of one or several of the following
constants:
FSL_SIG_STAT_GFAIL: error in converting the signal value
FSL_SIG_STAT_GFAIL: overrun in one of the receive buffers

sValue [in/out] Value of signal

VCI Frame and Signal API Software Design Guide 4.02.0250.20026 1.0 en-US

This page intentionally left blank

last page

© 2019 HMS Industrial Networks
Box 4126
300 04 Halmstad, Sweden

info@hms.se 4.02.0250.20026 1.0 en-US / 2019-11-12 / 16063

	1 User Guide
	1.1 Related Documents
	1.2 Document History
	1.3 Conventions

	2 System Overview
	2.1 VCI Components
	2.2 Components of the Frame and Signal API
	2.2.1 Message Based Clients
	2.2.2 Signal Based Clients
	2.2.3 CAN Specific Components

	3 Communication
	3.1 Signal Based Communication
	3.1.1 Accessing and Initializing the Signal Set
	3.1.2 Converting Signal Values
	3.1.3 Reading Receive Signal Sets
	3.1.4 Writing Transmit Signal Sets
	3.1.5 Deactivating and Releasing the Signal Set

	3.2 CAN Specific Communication
	3.2.1 Creating a Message Switch
	3.2.2 Initializing and Activating the Message Switch
	3.2.3 Creating and Initializing Clients: Message Sinks
	3.2.4 Creating and Initializing Clients: Message Sources
	3.2.5 Disconnecting Clients

	4 API Functions
	4.1 Exported Functions
	4.1.1 VciCreateCanMsgSwitch

	4.2 Interface IUnknown
	4.2.1 QueryInterface
	4.2.2 AddRef
	4.2.3 Release

	4.3 Signal Specific Interfaces
	4.3.1 ISignalSet
	4.3.2 IRSignalSet
	4.3.3 ITSignalSet

	4.4 CAN Specific Interfaces
	4.4.1 Message Switch: ICanMsgSwitch
	4.4.2 Message Sink: ICanRMsgBuffer
	4.4.3 Message Sink: ICanRMsgQueue
	4.4.4 Message Sink: ICanRMsgSet
	4.4.5 Message Source: ICanTMsgBuffer
	4.4.6 Message Source: ICanTMsgQueue
	4.4.7 Message Source: ICanTMsgSet

	5 Data Structures
	5.1 CAN Specific Data Types
	5.1.1 CANMSGSWITCHSTATUS

	5.2 Signal Specific Data Types
	5.2.1 FSLVAR
	5.2.2 FSLSIGNAL

