
Mech-DLK

Mech-Mind

Dec 02, 2022

INTRODUCTION

1 Mech-DLK V2.2.1 Release Notes 6

2 Installation 7

3 Train the First Model 12

4 Fast Positioning 18

5 Defect Segmentation 25

6 Classification 42

7 Object Detection 60

8 Instance Segmentation 77

9 Module Cascading 104

10 Running Mode 116

11 Image Preprocessing Tool 121

12 Data Augmentation 123

13 Keyboard Shortcuts 126

14 About Mech-DLK SDK 128

15 Getting Started with SDK 130

16 API Reference Guide 143

17 Prerequisites for Using Mech-Mind Software 149

18 Terminology 162

19 Compatibility 163

20 Support 166

21 FAQ 185

i

Mech-DLK

Mech-DLK is a machine vision deep learning software independently developed by Mech-Mind Robotics.

With a variety of built-in industry-leading deep learning algorithms, it can solve many problems that
traditional machine vision cannot handle, such as highly difficult segmentation, positioning, classification,
etc.

Through intuitive and simple UI interactions, even without programming or specialized deep learning
knowledge, users can quickly implement model training and verification with Mech-DLK.

The software includes five algorithm modules: Fast Positioning, Defect Segmentation, Classification,
Object Detection, and Instance Segmentation.

Recognize the object orientation in an image and correct the image based on the recognition
result.

The module is used to correct object image orientations. It runs fast and is usually used as a preceding
module for other algorithm modules.

• Recognize workpiece orientations in images and rotate the images to a specified orientation.

INTRODUCTION 1

Mech-DLK

Determine whether an image is OK or NG. If it is NG, segment the defect region(s).

The module is used to detect various types of defects, including surface defects such as stains, bubbles,
scratches, etc., positional defects such as bending, abnormal shape, absence, etc. It can be applied in
complex situations such as small defects, complex backgrounds, and unstable workpiece positions.

• Detect air bubbles and glue spill defects on the lens surface.

• Detect bending defects of workpieces.

Recognize object classes in images.

The module is used to recognize workpiece front and back faces, workpiece orientations, and defect types,
and to recognize whether objects are missing, or whether objects are neatly arranged.

INTRODUCTION 2

Mech-DLK

• Recognize whether workpieces are neatly arranged or scattered.

• Recognize the fronts and backs of workpieces.

Detect the positions of all target objects and recognize their categories at the same time.

This module is used to detect the absence of workpieces of fixed position, such as missing components in
a PCB; it can also be used for object counting. Even for hundreds or thousands of objects, the module
can quickly perform locating and counting.

• Detect rotors that overlap each other.

INTRODUCTION 3

Mech-DLK

• Count all rebars.

Recognize the contour and class of each target object.

This module can produce more refined segmentation results than the module“Object Detection”. The
module can recognize single or multi-class objects and segment the corresponding contours.

It is used for depalletizing, machine tending, piece picking, etc., and it cooperates with Mech-Vision and
Mech-Viz to complete object picking.

• Segment blocks of various types.

INTRODUCTION 4

Mech-DLK

• Segment scattered and overlapping chain links.

• Segment cartons placed tightly and parallelly together.

INTRODUCTION 5

CHAPTER

ONE

MECH-DLK V2.2.1 RELEASE NOTES

1.1 New Features

1.1.1 Added the Function of Showing the Class Activation Maps for Module“Clas-
sification”

After the model is trained, click Generate CAM . The class activation maps show the weights of the
features in the form of heat maps; the model classifies an image into its class according to these features.
Image regions with warmer colors have higher weights for classifying the image into its class.

1.1.2 Verification and Export of CPU models

• Classification, Object Detection: After training is complete, select the deployment device as
CPU or GPU before exporting the model.

• Instance segmentation: Before training the model, set the training parameters. When exporting
a model, select the deployment device as CPU/GPU:

– CPU lightweight model : Before training the model, set the training parameter Model type
to Lite (better with CPU deployment). When exporting the model for deployment, set
Deployment device to CPU or GPU.

– GPU standard model : Before training the model, set the training parameter Model type to
Normal (better with GPU deployment). When exporting the model for deployment, it
is recommended to set Deployment device to GPU.

6

CHAPTER

TWO

INSTALLATION

A Mech-Mind software environment should be installed to guarantee the proper functioning of Mech-
DLK. This section covers the prerequisites for running Mech-DLK and how to install the Mech-Mind
software environment and Mech-DLK.

2.1 Device Prerequisites

Mech-DLK Pro-Run Mech-DLK Pro-Train/Standard
Operating system Windows 10 or above
CPU Intel® Core™ i5 or above Intel® Core™ i7 or above
RAM 8 GB or above 16 GB or above
Graphics card GeForce GTX 1650 (4GB) or above GeForce GTX 2070 (8GB) or above
Graphics card driver 471.68 or above

2.1.1 Requirements for the Graphics Card

• The computer graphics card’s computation capacity should be at least that of Nvidia GeForce
6.1.

• Click here to check the compute capability for your GPU.

7

https://developer.nvidia.com/cuda-gpus

Mech-DLK

2.2 Install the Mech-Mind Software Environment

• If you are using Mech-DLK for inference only, then you do not need to install the
Mech-Mind Software Environment.

• If you are using Mech-DLK for both model training and inference, please install the
Mech-Mind Software Environment according to the following instructions.

1. Download the file Mech-Mind_software_environment_installer.

2. Right-click on the file and go to CRC SHA → CRC-32 to check if the file has been corrupted or
not. The CRC32 should be the same as the number in the installer name.

3. Extract the file with any extraction tools.

4. Double click on the Mech_Mind_software_environment_installer.exe file and install according to
the instructions.

2.2. Install the Mech-Mind Software Environment 8

Mech-DLK

2.3 Install Mech-DLK

1. Download the file Mech_DLK_installer.exe.

2. Double click on the file and install it according to the instructions. A window as shown below will
appear if the software has been installed successfully.

2.4 Install the Dongle Driver

1. Run the CodeMeter installer received from Mech-Mind to install CodeMeter. Check the option as
shown below, and then select Next to complete the installation.

2.3. Install Mech-DLK 9

Mech-DLK

2. A window as shown below will appear if the setting-up has been completed successfully.

2.4. Install the Dongle Driver 10

Mech-DLK

2.4. Install the Dongle Driver 11

CHAPTER

THREE

TRAIN THE FIRST MODEL

This section shows how to train and export an example model that can be used for defect segmentation.
The data used for training is from an image dataset of connectors.

Preparation

• Please make sure that you have installed the Mech-Mind software environment and Mech-DLK
successfully.

• Click here to download the image dataset and decompress the file.

Training Process

1. Create a New Project

Click on New Project in the interface, name the project, and select a directory to save
the project.

12

https://docs.mech-mind.net//download/Mech-DLK/DefectDetection(NetworkPort).rar

Mech-DLK

2. Add the Defect Segmentation Module

Click on in the upper right corner of the Modules panel to add a module. Select
Defect Segmentation and then click on OK.

3. Import Data

Click on the Import button in the upper left corner, select Folder and import the image
dataset you have downloaded.

13

Mech-DLK

4. Labeling

In this example, you will need to label the OK images and NG images in each dataset.
OK means that the connectors meet quality requirements and NG means that there are
defects such as deformations and fractures on the connectors.

For NG images, click on and then hold the left mouse button to select the area with

defects. Click on to use the eraser tool to remove the labeled area.

14

Mech-DLK

Hint: After selecting the area with defects, right-click to confirm the selection and exit
the polygon tool.

For OK images that do not contain any defect, please select the image and then right-
click and select Set to OK in the context menu. Please make sure that there is at least
one OK image in each dataset.

5. Train the Model

Select Training and then click on Train in the lower right corner of the interface to start
training the model.

15

Mech-DLK

6. Validate the Model

After the training is completed, click on Validate to validate the model and check the
results.

7. Export the Model

Click on Export and select a directory to save the exported model (with file extension
dlkpack). Then you can deploy the model according to actual needs.

16

Mech-DLK

17

CHAPTER

FOUR

FAST POSITIONING

4.1 Introduction

This module is used to detect objects in images and rotate the images to a specified orientation.

4.1.1 Applicable Scenarios

Electronics manufacturing: Detect the electronic components with different placement orientations
in the images and adjust the orientations to a specified one.

18

Mech-DLK

4.1.2 General Workflow

4.2 Start Using the “Fast Positioning”Module

Please click here to download an image dataset of connectors. In this section, we will use a Fast
Positioning module and train a model to rotate the connectors in the images to a specified orientation.

1. Create a new project and add the fast positioning module

Click on New Project in the interface, name the project, and select a directory to save

the project. Click on in the upper right corner of the Modules panel and add the
Fast Positioning module.

4.2. Start Using the “Fast Positioning”Module 19

https://docs.mech-mind.net//download/Mech-DLK/DefectDetection(NetworkPort).rar

Mech-DLK

2. Set a template

Click on Set Template and select two areas that contain features. Click on Draw under
feature1 to select the first feature and then click on Draw under feature2 to select the
second feature. Then click on Next to adjust the expected image orientation.

4.2. Start Using the “Fast Positioning”Module 20

Mech-DLK

Drag the slider or click on and to adjust the image to an expected orientation,
and cilck on Finish to confirm settings.

4.2. Start Using the “Fast Positioning”Module 21

Mech-DLK

3. Modify the labeling

Click on and then go to Set template, the labeled image will appear in the window.
You can drag the feature frames to adjust the feature regions and re-adjust the expected
orientation in the same way that you set it the first time.

4.2. Start Using the “Fast Positioning”Module 22

Mech-DLK

4. Train the model

Keep the default training parameter settings and click on Train to start training the
model.

5. Validate the model

After the training is completed, click on Validate to validate the model and check the
results.

6. Export the model

Click on Export and select a directory to save the exported model. You can deploy the
model according to actual needs.

4.2. Start Using the “Fast Positioning”Module 23

Mech-DLK

4.2. Start Using the “Fast Positioning”Module 24

CHAPTER

FIVE

DEFECT SEGMENTATION

5.1 Introduction

This module is used to detect and segment the defect areas in the image.

5.1.1 Applicable Scenarios

Renewable energy: Suitable for detecting various types of defects. This module is capable of working
under complicated situations, such as when the defects are tiny, the background is complex, or the
positions of the workpieces are not fixed, etc. For example, this module can be used for weld seam
inspection or appearance inspection of lithium batteries.

Electronics manufacturing: Suitable for detecting the surface defects, such as stains, bubbles,
scratches, etc., of functional modules and electronic components.

25

Mech-DLK

PCB manufacturing, printing, daily necessities manufacturing, and other industries: Suit-
able for detecting surface defects, such as scratches or foreign object debris, of PCB, connectors, printing
products, daily necessities, and other objects.

5.1. Introduction 26

Mech-DLK

5.1.2 General Workflow

5.1.3 Tips

The performance of the trained model depends on the followings.

1. The quality of labeling.

2. Selecting a proper ROI .

3. Selecting a suitable dataset.

5.2 Start Using the “Defect Segmentation”Module

Please click here to download an image dataset of connectors. In this section, we will use a Defect
Segmentation module and train a model to detect the defects such as deformations and fractures on
the connectors.

1. Create a new project and add the defect segmentation module

Click on New Project in the interface, name the project, and select a directory to save

the project. Click on in the upper right corner of the Modules panel and add the
Defect Segmentation module.

5.2. Start Using the “Defect Segmentation”Module 27

https://docs.mech-mind.net//download/Mech-DLK/DefectDetection(NetworkPort).rar

Mech-DLK

2. Import the image dataset of connectors

Decompress the downloaded dataset file. Click on the Import button in the upper left
corner, select Folder, and import the image dataset. The connector pins in the images
can be deformed, fractured, or intact.

3. Select an ROI

Click on the ROI Tool button and adjust the frame to select the pins in the
image as an ROI, and click on Apply to save the settings. Setting the ROI can avoid

5.2. Start Using the “Defect Segmentation”Module 28

Mech-DLK

interferences from the background and reduce processing time.

4. Label images

In this section, you will need to label the OK images and NG images in each dataset.
OK means that the connectors meet quality requirements and NG means that there are
defects such as deformations and fractures on the connectors.

For NG images, Right-click on the Polygon Tool and select a proper tool to select the
defect area. Please select the defect as precisely as possible with the tools, and avoid
including irrelevant regions.

Hint: The quality of labeling is the most important factor affecting the performance
of the model. Please refer to Ensure Labeling Quality for detailed instructions on image
labeling.

5.2. Start Using the “Defect Segmentation”Module 29

Mech-DLK

For OK images that do not contain any defect, select the image and then right-click and
select Set to OK in the context menu.

5. Split the dataset into the training set and validation set

Please make sure that both the training set and validation set include images with all
types of defects, which will guarantee that the algorithm can learn all different types of
defects and validate the images with different defects properly. If the default training set
and validation set cannot meet this requirement, please right-click the individual image
and switch it to the training/validation set manually.

5.2. Start Using the “Defect Segmentation”Module 30

Mech-DLK

6. Train the model

Keep the default training parameter settings and click on Train to start training the
model.

7. Validate the model

After the training is completed, click on Validate to validate the model and check the re-
sults. You can also use the Set Defect Judgment Rules to adjust the criteria for evaluating
defects.

5.2. Start Using the “Defect Segmentation”Module 31

Mech-DLK

8. Export the model

Click on Export and select a directory to save the exported model. You can deploy the
model according to actual needs.

5.2. Start Using the “Defect Segmentation”Module 32

Mech-DLK

5.3 Train a High-Quality Model

Industrial quality inspections usually have strict limits on false negative and false positive rates.

Therefore, the quality of the “Defect Segmentation”model is very important.

This section introduces several factors that most affect the model quality and how to train high-quality
“Defect Segmentation”models.

• Ensure labeling quality

• Set the proper region of interest (ROI)

• Select the right dataset

5.3.1 Ensure Labeling Quality

Labeling quality is the most significant factor affecting model performance. In actual
projects, low labeling quality accounts for the reasons for more than 90% of poor model
performance cases. Therefore, if the model is not performing well, solving labeling quality
issues should be prioritized.

Labeling quality involves consistency, completeness, and accuracy:

1. Consistency: Ensure the consistency of defect labeling methods, and avoid using different labeling
methods for the same type of defects.

• Left image, bad example: Label defects of the same type in different ways.

• Right image, good example: Label defects of the same type in a consistent way.

2. Completeness: Ensure that all regions that should be considered as defect regions according to
the user-defined standard are selected, and avoid any missed selections.

• Left image, bad example: Omit the regions that should be labeled.

• Right image, good example: Label all necessary regions.

The defects are missing parts in the welding areas. Although both ways of labeling are
correct, when labeling, please stick to one way.

3. Accuracy: Make the region selection as fine as possible to ensure the selected regions’contours
fit the actual defects’contours and avoid bluntly covering the defects with coarse large selections.

• Left image, bad example: Cover defects with a coarse large selection.

• Right image, good example: Make the contour of the selection fit the defect’s
contour.

5.3. Train a High-Quality Model 33

Mech-DLK

Some bubbles in the example on the left were omitted.
4. Certainty: For ambiguous defects, when it is impossible to judge whether the defect judgment

criteria are met, the mask polygon tool can be used to cover the defect area.

• Left image, good example: Mask out regions containing ambiguous defects.

• Right image, mediocre example: Leave regions in which whether there are
defects is hard to determine unprocessed and exposed to the model.

The contours of the selection and the actual defect should be the same.

Attention: When there are multiple defects in the image, if it is impossible to judge whether each
defect meets the defect judgment criteria, you can delete the current image to avoid affecting the
model training effect.

5.3. Train a High-Quality Model 34

Mech-DLK

5.3.2 Set the Proper Region of Interest (ROI)

Setting the ROI can effectively eliminate the interference of the background, and the ROI boundary
should be as close to the outer contours of the objects as possible.

Hint: The same ROI setting will be applied to all images, so it is necessary to ensure that objects in all
images are located within the ROI, especially in scenarios where the object positions/sizes are not fixed.

5.3.3 Select the Right Dataset

1. Control dataset image quantities

For the first-time model building of the “Classification”module, capturing 20 to 30
images is recommended.

It is not true that the larger the number of images the better. Adding a large number of
inadequate images in the early stage is not conducive to the later model improvement,
and will make the training time longer.

2. Collect representative data

The datasets should contain NG images covering all the defect types with all defect
features, in terms of shape, background, color, size, etc. When the features in OK
images do not differ across images, the number of OK images can be relatively small.

3. Balance data proportion

The number of images of different conditions/object classes in the datasets should be
proportioned according to the actual project; otherwise, the training effect will be af-
fected.

4. Dataset images should be consistent with those from the application site

The factors that need to be consistent include lighting conditions, object features, back-
ground, field of view, etc.

5.3. Train a High-Quality Model 35

Mech-DLK

5.4 Solve Difficult Problems

5.4.1 Grid Cutting Tool

In industrial inspection scenarios, if the image size from the camera is large, smaller defects may be
inconspicuous. In this case, the grid cutting tool in the “Defect Segmentation”module can be used to
cut a larger image into small images of the same size, which makes it easier for detecting smaller defects.

This feature includes the following two tools:

1. Grid cutting tool: Gridize large images, and the number of grid rows and columns can be set by
the user.

Attention: The number of grid rows and columns should not be too large. Oth-
erwise, the number of small images produced will be large, which will lead to lower
inference speed.

2. Grid selection tool: Select NG and OK images among the produced small images to put into each
dataset.

5.4. Solve Difficult Problems 36

Mech-DLK

Attention: If the grid selection tool is not used after using the grid cutting tool,
then all the small images containing defects in NG images and all the small images
in the OK images will be put into the training set by default. This may affect the
training effect because there would be too many similar NG and OK images.

5.4.2 Mask Polygon Tool

When labeling object defects, if the background of the object to be inspected or the surface features of
the object itself are similar to the defects, the subsequent training and even the quality of the model will
be affected.

To avoid the above issue, you can use the mask polygon tool to mask out regions that may cause a
negative influence on model training.

5.4. Solve Difficult Problems 37

Mech-DLK

Hint: The usage of the mask polygon tool is similar to that of the polygon tool for labeling. The
masked regions will not be used for learning by the model.

5.4.3 Set Defect Judgment Rules

In defect segmentation scenarios, if you need to refer to the user-defined defect definition criteria to
further recognize defects, or you want to re-adjust the defect ratio according to the yield rate, you can
filter defects by adjusting the quantity threshold, area range, minimum circumscribed rectangle rotation
angle range, and region of occurrence.

5.4. Solve Difficult Problems 38

Mech-DLK

5.4.4 Adjust Training Parameters

When there is a need to speed up inference and improve model accuracy during training, the training
parameters can be adjusted.

5.4. Solve Difficult Problems 39

Mech-DLK

Input image size

Please set the image size according to the project requirements.

Model type

It has two options: “normal”and “enhanced”. In regular cases, keeping the default
selection“normal”will suffice. In complex cases, or when there are higher requirements on
model accuracy,“enhanced”can be selected, but selecting“enhanced”may lead to a longer
training time.

Eval. interval

This parameter sets the number of training epochs in the interval of two evaluations. The
larger the evaluation interval, the fewer the performed evaluations and the faster the training.

Epochs

Usually, the default setting suffices. If the image features to be recognized are complex, it is
necessary to appropriately increase the number of epochs to improve the convergence of the
model, but it will make training slower.

Attention: It is not true that the larger the number of epochs the better. Excessive emphasis on
convergence may lead to overfitting.

5.4. Solve Difficult Problems 40

Mech-DLK

You can use the mask polygon tool to mask out the regions containing ambiguous defects.

5.4. Solve Difficult Problems 41

CHAPTER

SIX

CLASSIFICATION

6.1 Introduction

This module is used to classify different images.

6.1.1 Applicable Scenarios

Machine tending: Suitable for classifying the front and back side, positions, types, or other properties
of the workpieces in industries such as steel and machinery.

42

Mech-DLK

6.1.2 General Workflow

6.1.3 Tips

The performance of the trained model depends on the followings.

1. The quality of the captured images.

2. The quality of the datasets.

3. The quality of labeling.

6.1. Introduction 43

Mech-DLK

6.2 Start Using the “Classification”Module

Please click here to download an image dataset of condensers. In this section, we will use a Classification
module and train a model to distinguish between the front and back sides of the condenser.

1. Create a new project and add the classification module

Click on New Project in the interface, name the project, and select a directory to save

the project. Click on in the upper right corner of the Modules panel and add the
Classification module.

2. Import the image dataset of condensers

Decompress the downloaded dataset file. Click on the Import button in the upper left
corner, select Folder, and import the image dataset.

6.2. Start Using the “Classification”Module 44

https://docs.mech-mind.net//download/Mech-DLK/Classification(Condenser).zip

Mech-DLK

3. Select an ROI

Click on the ROI Tool and adjust the frame to select the whole condenser as an ROI,
and click on Apply to save the settings. Setting the ROI can avoid interferences from the
background and reduce processing time.

4. Create labels

Click on the button in the Classes panel to create labels and name the labels based
on the object names or their features. In this example, the labels are named Front and
Back to distinguish between the front and back sides of the condenser.

5. Label images

6.2. Start Using the “Classification”Module 45

Mech-DLK

Classify the images with corresponding labels. You can select multiple images and label
them together. Please make sure that you have labeled the images accurately.

6. Split the dataset into the training set and validation set

By default, 80% of the images in the dataset will be split into the training set and the
rest 20% will be split into the validation set. Please make sure that both the training set
and validation set include images in all different classes, which will guarantee that
the algorithm can learn all different features and validate the images of different classes
properly.

If the default training set and validation set cannot meet this requirement, please click

on and drag the slider to adjust the proportion.

You can also right-click the individual image and switch it to the training/validation set
manually.

6.2. Start Using the “Classification”Module 46

Mech-DLK

7. Train the model

Keep the default training parameter settings and click on Train to start training the
model.

8. Validate the model

After the training is completed, click on Validate to validate the model and check the
results.

6.2. Start Using the “Classification”Module 47

Mech-DLK

9. Export the model

Click on Export and select a directory to save the exported model (with file extension
dlkpack). You can deploy the model according to actual needs.

6.2. Start Using the “Classification”Module 48

Mech-DLK

6.3 Train a High-Quality Model

This section introduces several factors that most affect the model quality and how to train a high-quality
image classification model.

• Ensure image quality

• Ensure dataset quality

• Ensure labeling quality

6.3.1 Ensure Image Quality

1. Avoid overexposure, dimming, color distortion, blur, occlusion, etc. These conditions will
lead to the loss of features that the deep learning model relies on, which will affect the model
training effect.

• Left image, bad example: Overexposure.

• Right image, good example: Adequate exposure.

• Left image, bad example: Dim image.

• Right image, good example: Adequate exposure.

You can avoid overexposure by methods such as shading.

• Left image, bad example: Color distortion.

• Right image, good example: Normal color.

6.3. Train a High-Quality Model 49

Mech-DLK

You can avoid dimming by methods such as supplementary light.

• Left image, bad example: Blur.

• Right image, good example: Clear.

Color distortion can be avoided by adjusting the white balance.

• Left image, bad example: Occluded by the robot arm.

• Right image, good example: Occluded by a human.

Please avoid capturing images when the camera or the objects are still moving.

6.3. Train a High-Quality Model 50

Mech-DLK

2. Ensure that the background, perspective, and height of the image capturing process are
consistent with the actual application. Any inconsistency will reduce the effect of deep learning in
practical applications. In severe cases, data must be re-collected. Please confirm the conditions of
the actual application in advance.

• Bad example: The background in the training data (left) is different from the background
in the actual application (right).

Please make sure there is no robot or human in the way from the camera to the
objects.

• Bad example: The field of view and perspective in the training data (left) are different from
that in the actual application (right).

Please make sure the background stays the same when capturing the training data
and when deploying the project.

• Bad example: The camera height in the training data (left) is different from the background
in the actual application (right).

6.3. Train a High-Quality Model 51

Mech-DLK

Please make sure the field of view and perspective stay the same when capturing the
training data and when deploying the project.

Attention: The quality of image classification is sensitive to lighting, and the lighting conditions
need to be consistent during collection; if the light is inconsistent in the morning and evening, it
needs to be collected separately according to the situation.

6.3.2 Ensure Dataset Quality

The “Classification”module obtains a model by learning the features of existing images and applies
what is learned to the actual application.

Therefore, to train a high-quality model, the conditions of the collected and selected dataset must be
consistent with those of the actual applications.

1. Collect datasets

2. Select datasets

Collect Datasets

Various placement conditions need to be properly allocated. For example, if there are horizontal and
vertical incoming materials in actual production, but only the data of horizontal incoming materials are
collected for training, the classification effect of vertical incoming materials cannot be guaranteed.

Therefore, when collecting data, it is necessary to consider various conditions of the actual applica-
tion, including the features present given different object placement orientations and positions.

1. Different orientations

6.3. Train a High-Quality Model 52

Mech-DLK

2. Different positions

6.3. Train a High-Quality Model 53

Mech-DLK

Data Collection Examples

A valve tube project

• Single object class.

• Distinguishing between the front and back sides of the valve tubes is needed.

• Positions are generally fixed with small deviations.

• 15 images for the front and back sides each were collected.

6.3. Train a High-Quality Model 54

Mech-DLK

An engine valve assembly project

• Single object class.

• Determining whether the object is correctly placed in the slot is needed.

• Since outside the slot, the object may appear in various positions and orientations, it is necessary
to consider different positions and orientations. 20 images were collected for objects outside the
slot.

• In the slot, only the factor of different positions need to be considered, so 10 images were collected
for objects inside the slot.

6.3. Train a High-Quality Model 55

Mech-DLK

A sheet metal project

• Two object classes. Different object sizes need to be recognized.

• Objects may come in different positions and orientations.

• 20 images were collected for the front and back sides each.

6.3. Train a High-Quality Model 56

Mech-DLK

Select the Right Dataset

1. Control dataset image quantities

For the first-time model building of the “Classification”module, capturing 30 images
is recommended.

It is not true that the larger the number of images the better. Adding a large number of
inadequate images in the early stage is not conducive to the later model improvement,
and will make the training time longer.

2. Collect representative data

Dataset image capturing should consider all the conditions in terms of illumination, color,
size, etc. of the objects to recognize.

• Lighting: Project sites usually have environmental lighting changes, and the datasets
should contain images with different lighting conditions.

• Color: Objects may come in different colors, and the datasets should contain images
of objects of all the colors.

• Size: Objects may come in different sizes, and the datasets should contain images of
objects of all existing sizes.

Attention: If the actual on-site objects may be rotated, scaled in images, etc., and
the corresponding image datasets cannot be collected, the datasets can be supple-
mented by adjusting the data augmentation training parameters to ensure that all
on-site conditions are included in the datasets.

3. Balance data proportion

The number of images of different conditions/object classes in the datasets should be
proportioned according to the actual project; otherwise, the training effect will be af-
fected.

4. Dataset images should be consistent with those from the application site

The factors that need to be consistent include lighting conditions, object features, back-
ground, field of view, etc.

6.3.3 Ensure Labeling Quality

• Please ensure there are no missed or incorrect labelings.

– Left image, bad example: Wrong label.

– Right image, good example: Correct label.

6.3. Train a High-Quality Model 57

Mech-DLK

Please make sure the camera height stays the same when capturing the training data
and when deploying the project.

6.3.4 Class Activation Maps

After the training of the image classification model is completed, click on Generate CAM to generate
the class activation maps, and click on Show class activation maps (CAM).

The class activation maps show the feature regions in the images that are paid attention to when training
the model, and they help check the classification performance, thus providing references for optimizing
the mode.

The left image is the workpiece front and the right image is the workpiece back.

6.4 CPU and GPU Model Deployment

6.4.1 CPU Model Deployment

If the model is to be deployed on a CPU device, please select CPU for Deployment device.

6.4. CPU and GPU Model Deployment 58

Mech-DLK

6.4.2 GPU Model Deployment

If the model is to be deployed on a GPU device, please select GPU for Deployment device.

For Model type to export, please select dlkmt only when the model training and deployment are
done on GPU graphics cards of the same model.

Otherwise, please select dlkmo to avoid the problem that the model file cannot be used due to the
difference in graphics card models for training and deployment.

6.4. CPU and GPU Model Deployment 59

CHAPTER

SEVEN

OBJECT DETECTION

7.1 Introduction

This module is used to detect the location of all target objects and estimate their classes.

7.1.1 Applicable Scenarios

Counting workpieces: Suitable for counting bundles of steel bars, loose parts, and tiny parts in
factories.

Detecting the location of workpieces: Suitable for detecting and locating the metal parts in factories
or on assembly lines.

60

Mech-DLK

7.1.2 General Workflow

7.1.3 Tips

The performance of the trained model depends on the followings.

1. The quality of the captured images.

2. The quality of the datasets.

3. The quality of labeling.

7.1. Introduction 61

Mech-DLK

7.2 Start Using the “Object Detection”Module

Please click here to download an image dataset of rotors. In this section, we will use an Object
Detection module and train a model to detect the rotors in the image and output the quantity.

1. Create a new project and add the object detection module

Click on New Project in the interface, name the project, and select a directory to save the project.

Click on in the upper right corner of the Modules panel and add the Object Detection
module.

2. Import the image dataset of rotors

Decompress the downloaded dataset file. Click on the Import button in the upper left corner, select
Folder, and import the image dataset.

7.2. Start Using the “Object Detection”Module 62

https://docs.mech-mind.net//download/Mech-DLK/InstanceSegmentation(Blocks).zip

Mech-DLK

3. Select an ROI

Click on the ROI Tool button and adjust the frame to select the bin containing rotors in the
image as an ROI, and click on Apply to save the settings. Setting the ROI can avoid interferences
from the background and reduce processing time.

4. Split the dataset into the training set and validation set

By default, 80% of the images in the dataset will be split into the training set and the rest 20%
will be split into the validation set. Please make sure that both the training set and validation set

7.2. Start Using the “Object Detection”Module 63

Mech-DLK

include objects of all classes to be detected, which will guarantee that the algorithm can learn
all different classes and validate the images properly.

If the default training set and validation set cannot meet this requirement, please click on and
drag the slider to adjust the proportion.

You can also right-click the individual image and switch it to the training/validation set manually.

5. Create Labels

Select Labeling and click on the button in the Classes panel to create labels based on the
type or feature of different objects. In this example, the labels are named after the rotors.

7.2. Start Using the “Object Detection”Module 64

Mech-DLK

6. Label images

Right-click on the button and select a proper tool to label the image. Please select the rotors
as precisely as possible and avoid including irrelevant regions. Inaccurate labeling will affect the
training result of the model.

7. Train the model

Keep the default training parameter settings and click on Train to start training the model.

7.2. Start Using the “Object Detection”Module 65

Mech-DLK

8. Validate the model

After the training is completed, click on Validate to validate the model and check the results.

9. Export the model

Click on Export and select a directory to save the exported model. You can deploy the model
according to actual needs.

7.2. Start Using the “Object Detection”Module 66

Mech-DLK

7.3 Train a High-Quality Model

This section introduces several factors that most affect the model quality and how to train a high-quality
image classification model.

• Ensure image quality

• Ensure dataset quality

• Ensure labeling quality

7.3.1 Ensure Image Quality

1. Avoid overexposure, dimming, color distortion, blur, occlusion, etc. These conditions will
lead to the loss of features that the deep learning model relies on, which will affect the model
training effect.

• Left image, bad example: Overexposure.

• Right image, good example: Adequate exposure.

• Left image, bad example: Dim image.

• Right image, good example: Adequate exposure.

You can avoid overexposure by methods such as shading.

• Left image, bad example: Color distortion.

• Right image, good example: Normal color.

7.3. Train a High-Quality Model 67

Mech-DLK

You can avoid dimming by methods such as supplementary light.

• Left image, bad example: Blur.

• Right image, good example: Clear.

Color distortion can be avoided by adjusting the white balance.

• Left image, bad example: Occluded by the robot arm.

• Right image, good example: Occluded by a human.

Please avoid capturing images when the camera or the objects are still moving.

7.3. Train a High-Quality Model 68

Mech-DLK

2. Ensure that the background, perspective, and height of the image capturing process are
consistent with the actual application. Any inconsistency will reduce the effect of deep learning in
practical applications. In severe cases, data must be re-collected. Please confirm the conditions of
the actual application in advance.

• Bad example: The background in the training data (left) is different from the background
in the actual application (right).

Please make sure there is no robot or human in the way from the camera to the
objects.

• Bad example: The field of view and perspective in the training data (left) are different from
that in the actual application (right).

Please make sure the background stays the same when capturing the training data
and when deploying the project.

• Bad example: The camera height in the training data (left) is different from the background
in the actual application (right).

7.3. Train a High-Quality Model 69

Mech-DLK

Please make sure the field of view and perspective stay the same when capturing the
training data and when deploying the project.

7.3.2 Ensure Dataset Quality

An object detection model is trained by learning the features of the objects in the image. Then the
model applies what is learned in the actual applications.

Therefore, to train a high-quality model, the conditions of the collected and selected dataset must be
consistent with those of the actual applications.

1. Collect Datasets

2. Select Datasets

Collect Datasets

Various placement conditions need to be properly allocated. For example, if there are horizontal and
vertical incoming materials in actual production, but only the data of horizontal incoming materials are
collected for training, the classification effect of vertical incoming materials cannot be guaranteed.

Therefore, when collecting data, it is necessary to consider various conditions of the actual appli-
cation, including the features present given different object placement orientations, positions, and
positional relationships between objects.

Attention: If some situations are not in the datasets, the deep learning model will not go through
inadequate learning on the corresponding features, which will cause the model to be unable to effec-
tively make recognitions given such conditions. In this case, data on such conditions must be collected
and added to reduce the errors.

Orientations

7.3. Train a High-Quality Model 70

Mech-DLK

Positions

7.3. Train a High-Quality Model 71

Mech-DLK

Positional relationships between objects

7.3. Train a High-Quality Model 72

Mech-DLK

Data Collection Examples

A workpiece inspection project

• The incoming objects are rotors scattered randomly.

• The project requires accurate detection of all rotor positions.

• 30 images were collected.

– Positions: In the actual application, the rotors may be in any position in the bin,
and the quantity will decrease after picking each time.

– Positional relationships: The rotor may come scattered, neatly placed, or over-
lapped.

A steel bar counting project

• Steel bars have relatively simple features, so only the variations of object positions need to be
considered. Images in which steel bars are in any position in the camera’s field of view were
captured.

Select the Right Dataset

1. Control dataset image quantities

For the first-time model building of the“Object Detection”module, capturing 20 images
is recommended.

It is not true that the larger the number of images the better. Adding a large number of
inadequate images in the early stage is not conducive to the later model improvement,
and will make the training time longer.

7.3. Train a High-Quality Model 73

Mech-DLK

2. Collect representative data

Dataset image capturing should consider all the conditions in terms of illumination, color,
size, etc. of the objects to recognize.

• Lighting: Project sites usually have environmental lighting changes, and the datasets
should contain images with different lighting conditions.

• Color: Objects may come in different colors, and the datasets should contain images
of objects of all the colors.

• Size: Objects may come in different sizes, and the datasets should contain images of
objects of all existing sizes.

Attention: If the actual on-site objects may be rotated, scaled in images, etc., and
the corresponding image datasets cannot be collected, the datasets can be supple-
mented by adjusting the data augmentation training parameters to ensure that all
on-site conditions are included in each dataset.

3. Balance data proportion

The number of images of different conditions/object classes in the datasets should be
proportioned according to the actual project; otherwise, the training effect will be af-
fected.

4. Dataset images should be consistent with those from the application site

The factors that need to be consistent include lighting conditions, object features, back-
ground, field of view, etc.

7.3.3 Ensure Labeling Quality

Labeling quality should be ensured in terms of completeness and accuracy.

1. Completeness: Label all objects that meet the rules, and avoid missing any objects or object
parts.

• Left image, bad example: Omit objects that should be labeled.

• Right image, good example: Label all objects.

7.3. Train a High-Quality Model 74

Mech-DLK

Please make sure the camera height stays the same when capturing the training data
and when deploying the project.

2. Accuracy: Each rectangular selection should contain the entire object. Please avoid missing any
object parts, or including excess regions outside the object contours.

• Left image, bad example: Include multiple objects or incomplete objects in one selection.

• Right image, good example: Each selection corresponds to one object.

Please do not omit any object.

7.4 CPU and GPU Model Deployment

7.4.1 CPU Model Deployment

If the model is to be deployed on a CPU device, please select CPU for Deployment device.

7.4. CPU and GPU Model Deployment 75

Mech-DLK

7.4.2 GPU Model Deployment

If the model is to be deployed on a GPU device, please select GPU for Deployment device.

For Model type to export, please select dlkmt only when the model training and deployment are
done on GPU graphics cards of the same model.

Otherwise, please select dlkmo to avoid the problem that the model file cannot be used due to the
difference in graphics card models for training and deployment.

Please do not include unnecessary regions or omit necessary object parts.

7.4. CPU and GPU Model Deployment 76

CHAPTER

EIGHT

INSTANCE SEGMENTATION

8.1 Introduction

This module is used to segment the contour of target objects and output the corresponding labels of the
classes.

8.1.1 Applicable Scenarios

Depalletizing: Applicable to scenarios where cartons, boxes, or sacks need to be depalletized from the
pallets and then placed elsewhere (such as a bag break station or conveyor belt).

77

Mech-DLK

Machine tending: Applicable to machine tending of complex workpieces, structural parts, irregular
parts in automobile, steel, machinery, and other industries.

Product picking: Applicable to batch picking, discrete order picking, etc., in the e-commerce industry.
This module is capable of processing various product packaging such as airbags, transparent packaging,
aluminum cans, packaging of irregular shapes, etc.

8.1. Introduction 78

Mech-DLK

Express parcels: Suitable for detecting parcels of different shapes such as soft packages, postal en-
velopes, express cartons, padded envelopes, etc.

8.1. Introduction 79

Mech-DLK

8.1.2 General Workflow

8.1.3 Tips

The performance of the trained model depends on the followings.

1. The quality of the captured images.

2. The quality of the datasets.

3. The quality of labeling.

8.2 Start Using the “Instance Segmentation”Module

Please click here to download an image dataset of wooden blocks. In this section, we will use an Instance
Segmentation module and train a model to segment different types of wooden blocks and export the
corresponding labels.

1. Create a new project and add the instance segmentation module

Click on New Project in the interface, name the project, and select a directory to save

the project. Click on in the upper right corner of the Modules panel and add the
Instance Segmentation module.

8.2. Start Using the “Instance Segmentation”Module 80

https://docs.mech-mind.net//download/Mech-DLK/InstanceSegmentation(Blocks).zip

Mech-DLK

2. Import the image dataset of wooden blocks

Decompress the downloaded dataset file. Click on the Import button in the upper left
corner, select Folder, and import the image dataset. The wooden blocks in the images
are of four different shapes and colors.

3. Select an ROI

Click on the ROI Tool button and adjust the frame to select the bin containing
wooden blocks in the image as an ROI, and click on Apply to save the settings. Setting
the ROI can avoid interferences from the background and reduce processing time.

8.2. Start Using the “Instance Segmentation”Module 81

Mech-DLK

4. Create Labels

Select Labeling and click on the button in the Classes panel to create labels based
on the type or feature of different objects. In this example, the labels are named after
the different shapes of the wooden blocks. You can also name the labels according to
different colors.

5. Label images

Right-click on the button and select a proper tool to label the image. In this
example project, the contours of the wooden blocks need to be outlined for segmentation.
In addition, please make sure that the different shapes of wooden blocks have been labeled

8.2. Start Using the “Instance Segmentation”Module 82

Mech-DLK

correctly.

6. Split the dataset into the training set and validation set

By default, 80% of the images in the dataset will be split into the training set and the rest
20% will be split into the validation set. Please make sure that both the training set and
validation set include objects of all classes to be segmented, which will guarantee
that the algorithm can learn all different classes and validate the images properly.

If the default training set and validation set cannot meet this requirement, please click

on and drag the slider to adjust the proportion.

You can also right-click the individual image and switch it to the training/validation set
manually.

8.2. Start Using the “Instance Segmentation”Module 83

Mech-DLK

7. Train the model

Keep the default training parameter settings and click on Train to start training the
model.

8. Validate the model

After the training is completed, click on Validate to validate the model and check the
results.

8.2. Start Using the “Instance Segmentation”Module 84

Mech-DLK

9. Export the model

Click on Export and select a directory to save the exported model (with file extension
dlkpack). You can deploy the model according to actual needs.

8.2. Start Using the “Instance Segmentation”Module 85

Mech-DLK

8.3 Train a High-Quality Model

This section introduces several factors that most affect the model quality and how to train a high-quality
image classification model.

• Ensure image quality

• Ensure dataset quality

• Ensure labeling quality

8.3.1 Ensure Image Quality

1. Avoid overexposure, dimming, color distortion, blur, occlusion, etc. These conditions will
lead to the loss of features that the deep learning model relies on, which will affect the model
training effect.

• Left image, bad example: Overexposure.

• Right image, good example: Adequate exposure.

• Left image, bad example: Dim image.

• Right image, good example: Adequate exposure.

You can avoid overexposure by methods such as shading.

• Left image, bad example: Color distortion.

• Right image, good example: Normal color.

8.3. Train a High-Quality Model 86

Mech-DLK

You can avoid dimming by methods such as supplementary light.

• Left image, bad example: Blur.

• Right image, good example: Clear.

Color distortion can be avoided by adjusting the white balance.

• Left image, bad example: Occluded by the robot arm.

• Right image, good example: Occluded by a human.

Please avoid capturing images when the camera or the objects are still moving.

8.3. Train a High-Quality Model 87

Mech-DLK

2. Ensure that the background, perspective, and height of the image capturing process are
consistent with the actual application. Any inconsistency will reduce the effect of deep learning in
practical applications. In severe cases, data must be re-collected. Please confirm the conditions of
the actual application in advance.

• Bad example: The background in the training data (left) is different from the background
in the actual application (right).

Please make sure there is no robot or human in the way from the camera to the
objects.

• Bad example: The field of view and perspective in the training data (left) are different from
that in the actual application (right).

Please make sure the background stays the same when capturing the training data
and when deploying the project.

• Bad example: The camera height in the training data (left) is different from the background
in the actual application (right).

8.3. Train a High-Quality Model 88

Mech-DLK

Please make sure the field of view and perspective stay the same when capturing the
training data and when deploying the project.

8.3.2 Ensure Dataset Quality

An instance segmentation model is trained by learning the features of the objects in the image. Then
the model applies what is learned in the actual applications.

Therefore, to train a high-quality model, the conditions of the collected and selected dataset must be
consistent with those of the actual applications.

1. Collect Datasets

2. Select the Right Dataset

Collect Datasets

Various placement conditions need to be properly allocated. For example, if there are horizontal and
vertical incoming materials in actual production, but only the data of horizontal incoming materials are
collected for training, the classification effect of vertical incoming materials cannot be guaranteed.

Therefore, when collecting data, it is necessary to consider various conditions of the actual appli-
cation, including the features present given different object placement orientations, positions, and
positional relationships between objects.

Attention: If some situations are not in the datasets, the deep learning model will not go through
inadequate learning on the corresponding features, which will cause the model to be unable to effec-
tively make recognitions given such conditions. In this case, data on such conditions must be collected
and added to reduce the errors.

Orientations

8.3. Train a High-Quality Model 89

Mech-DLK

Positions

8.3. Train a High-Quality Model 90

Mech-DLK

Positional relationships between objects

8.3. Train a High-Quality Model 91

Mech-DLK

Data Collection Examples

A metal piece project

• Single object class.

• 50 images were collected.

• Object placement conditions of lying down and standing on the side need to be considered.

• Object positions at the bin center, edges, corners, and at different heights need to be considered.

• Object positional relationships of overlapping and parallel arrangement need to be considered.

• Samples of the collected images are as follows.

8.3. Train a High-Quality Model 92

Mech-DLK

A grocery project

• 7 classes of objects are mixed and classification is required.

• The following situations need to be considered to fully capture object features.

– Situation #1: objects of one class placed in different orientations

– Situation #2: mixing objects of multiple classes

Number of images for situation #1: 5 * number of object classes.

Number of images for situation #2: 20 * number of object classes.

• The objects may come lying flat, standing on sides, or reclining, so images containing all faces of
the objects need to be considered.

• The objects may be in the center, on the edges, and in the corners of the bins.

• The objects may be placed parallelly or fitted together.

Samples of the collected images are as follows:

Placed alone

8.3. Train a High-Quality Model 93

Mech-DLK

Mixedly placed

A track shoe project

• The track shoes come in many models.

• The number of images captured was 30 * number of models.

8.3. Train a High-Quality Model 94

Mech-DLK

• The track shoes only face up, so only the facing-up condition needs to be considered.

• The track shoes may be on different heights under the camera.

• The track shoes are arranged regularly together, so the situation of closely fitting together needs
to be considered.

• Samples of the collected images are as follows:

A metal piece project

• Metal pieces are presented in one layer only. So only 50 images were captured.

• The metal pieces only face up.

• The metal pieces are in the center, edges, and corners of the bin.

• The metal pieces may be fitted closely together.

• Samples of the collected images are as follows:

A metal piece project

• Metal pieces are neatly placed in multiple layers.

• 30 images were collected.

• The metal pieces only face up.

• The metal pieces are in the center, edges, and corners of the bin and are on different heights under
the camera.

• The metal pieces may be fitted closely together.

8.3. Train a High-Quality Model 95

Mech-DLK

Samples of the collected images are as follows:

Select the Right Dataset

1. Control dataset image quantities

For the first-time model building of the“Instance Segmentation”module, capturing 30
images is recommended.

It is not true that the larger the number of images the better. Adding a large number of
inadequate images in the early stage is not conducive to the later model improvement,
and will make the training time longer.

2. Collect representative data

Dataset image capturing should consider all the conditions in terms of illumination, color,
size, etc. of the objects to recognize.

• Lighting: Project sites usually have environmental lighting changes, and the datasets
should contain images with different lighting conditions.

• Color: Objects may come in different colors, and the datasets should contain images
of objects of all the colors.

8.3. Train a High-Quality Model 96

Mech-DLK

• Size: Objects may come in different sizes, and the datasets should contain images of
objects of all existing sizes.

Attention: If the actual on-site objects may be rotated, scaled in images, etc., and
the corresponding image datasets cannot be collected, the datasets can be supple-
mented by adjusting the data augmentation training parameters to ensure that all
on-site conditions are included in each dataset.

3. Balance data proportion

The number of images of different conditions/object classes in the datasets should be
proportioned according to the actual project; otherwise, the training effect will be af-
fected.

4. Dataset images should be consistent with those from the application site

The factors that need to be consistent include lighting conditions, object features, back-
ground, field of view, etc.

8.3.3 Ensure Labeling Quality

Determine the Labeling Method

1. Label the upper surface’contour: It is suitable for regular objects that are laid flat, such as
cartons, medicine boxes, rectangular workpieces, etc., for which the pick points are calculated on
the upper surface contour, and the user only needs to make rectangular selections on the images.

• Left image, bad example: Select the entire box when only selecting the top surface is
needed.

• Right image, good example: Only select the top surface when necessary.

8.3. Train a High-Quality Model 97

Mech-DLK

2. Label the entire objects’contours: It is suitable for sacks, various types of workpieces, etc.,
for which only labeling the object contours is the general method.

• Good examples

3. Special cases: For example, when the recognition result needs to conform to how the grippers
work.

• It is necessary to ensure that the suction cup and the tip of the bottle to pick completely fit (high
precision is required), and only the bottle tip contours need to be labeled.

– Good example: Label bottle tips.

• The task of rotor picking involves recognizing rotor orientations. Only the middle parts whose
orientations are clear can be labeled, and the thin rods at both ends cannot be labeled.

8.3. Train a High-Quality Model 98

Mech-DLK

– Good example: Label middle parts of rotors.

• It is necessary to ensure that the suction parts are in the middle parts of the metal pieces, so only
the middle parts of the metal pieces are labeled, and the ends do not need to be labeled.

– Good example: Label middle parts.

8.3. Train a High-Quality Model 99

Mech-DLK

Check Labeling Quality

Labeling quality should be ensured in terms of completeness, correctness, consistency, and accuracy.

1. Completeness: Label all objects that meet the rules, and avoid missing any objects or object
parts.

• Left image, bad example: Omit objects.

• Right image, good example: Label all objects.

2. Correctness: Make sure that each object corresponds correctly to the label it belongs to, and
avoid situations where the object does not match the label.

• Left image, bad example: Wrong label. A Mentos was labeled as a yida.

• Right image, good example: Correct labels.

8.3. Train a High-Quality Model 100

Mech-DLK

3. Consistency: All data should follow the same labeling rules. For example, if a labeling rule
stipulates that only objects that are over 85% exposed in the images be labeled, then all objects
that meet the rule should be labeled. Please avoid situations where one object is labeled but
another similar object is not.

• Bad example: An object that should be labeled is labeled in one image but not labeled in
another.

4. Accuracy: Make the region selection as fine as possible to ensure the selected regions’contours
fit the actual object contours and avoid bluntly covering the defects with coarse large selections or
omitting object parts.

• Left image, bad example: Omit object parts

• Middle image: Correct labeling selection.

• Right image, good example: Include parts of other objects in an object’s selection.

8.3. Train a High-Quality Model 101

Mech-DLK

8.4 CPU and GPU Model Training and Deployment

8.4.1 CPU Model Training and Deployment

If the model is to be deployed on a CPU device, it is recommended to select Lite (better with CPU
deployment) .

Select CPU for Deployment device.

8.4. CPU and GPU Model Training and Deployment 102

Mech-DLK

8.4.2 GPU Model Training and Deployment

If the model is to be deployed on a GPU device, it is recommended to select Normal (better with
GPU deployment) .

Please select GPU for Deployment device.

For Model type to export, please select dlkmt only when the model training and deployment are
done on GPU graphics cards of the same model.

Otherwise, please select dlkmo to avoid the problem that the model file cannot be used due to the
difference in graphics card models for training and deployment.

Please make sure the camera height stays the same when capturing the training data
and when deploying the project.

8.4. CPU and GPU Model Training and Deployment 103

CHAPTER

NINE

MODULE CASCADING

The module cascading function is used to cascade two or more algorithm modules to train a model with
multiple recognition functions.

9.1 When to Use Module Cascading

When two or more identification requirements need to be met, module cascading can be used. For
example, when both object defect segmentation and defect classification are required, the “Defect
Segmentation”module and the “Classification”module can be cascaded.

With module cascading, there is no need to create multiple projects, which saves training and deployment
time.

Please see Train the First Model for instructions on using module cascading.

9.2 Methods of Cascading

9.3 Create a Cascading Project

The following instructions show how to create a cascading project for recognizing object defects and
classifying the defects.

104

Mech-DLK

The function is achieved by cascading two algorithm modules.

• Defect Segmentation recognizes defects in objects.

• Classification classifies the defects.

1. Create the project

Click New Project on the main window, select the project path and enter the project
name to create a new project.

2. Add the “Defect Segmentation”module

Click on in the module section on the right part of the main window, select the
Defect Segmentation module and click on Confirm .

9.3. Create a Cascading Project 105

Mech-DLK

3. Import image data

Click Import in the upper left, and select how to import the image data.

9.3. Create a Cascading Project 106

Mech-DLK

4. Select ROI

Click on to select the region of interest from the image. The purpose is to reduce
the interference of irrelevant background information and reduce the image processing
time.

5. Label the images

Please label the OK images and the NG images that contain defects in each dataset. For

NG images, please right-click on on the left-side toolbar of the image, select the
appropriate tools according to the shape of the defects, and select all defect regions in
the images.

Click to use the eraser tool for adjusting the selected regions.

9.3. Create a Cascading Project 107

Mech-DLK

For an image that contains no defect, please select the image in the image list on the
left, right-click, and select Set to OK .

9.3. Create a Cascading Project 108

Mech-DLK

6. Train the model

Click train at the bottom right to start training.

9.3. Create a Cascading Project 109

Mech-DLK

7. Validate the training effect

After the model training is completed, please click on Validate Result to see the model
effect.

9.3. Create a Cascading Project 110

Mech-DLK

8. Add the “Classification”module

After validating the training effect of the trained defect segmentation model and con-
firming that the recognition performance meets the requirement, please click + in the
“Module”section at the upper right of the window to add a “Classification”module.

9.3. Create a Cascading Project 111

Mech-DLK

9. Import data into the “Classification”module

The above defect segmentation training results will be imported into the image classifi-
cation module as a data source. Please click on Import , select the required data, and
click on Confirm .

10. Create image classification labels and start labeling

Before labeling the Classification module, please click on + in the “Label”section on
the right to create different labels according to the classes of the target objects. Then
click a label on the left side of the “Label”section to label the images.

9.3. Create a Cascading Project 112

Mech-DLK

11. Train the model

Click Train to start training the model with default parameters.

9.3. Create a Cascading Project 113

Mech-DLK

12. Validate the model

After training, click Validate to see the model’s performance.

13. Export the model file

After the model training is completed, please click on Export model on the right to export
the optimal model to the project folder.

9.3. Create a Cascading Project 114

Mech-DLK

9.3. Create a Cascading Project 115

CHAPTER

TEN

RUNNING MODE

In the running mode, you can directly make inference and verify the model training effect, and export the
inference report at the same time. The report records information such as accuracy, and false positive
and false negative rates, etc.

1. Select data source

DLK : Directly import all data in the software (as shown in the “Data”section of the
main window).

Folder : Select the image folder path outside the software. The new data loaded will be
independent of the original dataset within the software.

116

Mech-DLK

Hint: Before using the running mode, if other images have been imported in addition
to the training and validation set, selecting DLK will import the other images as well.

2. Defect detection settings

Set each parameter according to the defect judgment standard, and open the defect
filtering related options in the software. The defect detection parameters are independent
of the parameters in the Defect Judgement Rules.

117

Mech-DLK

3. Load the model

Click on Load Model , and click on Next after the loading is successful to enter the
inference interface.

118

Mech-DLK

4. Make inference and export report

Click on the start button in the automatic inference section to start making the inference.
After the inference is completed, check the validation results in the manual review section.
After all the checks are completed, click Export report to view the accuracy rate, over-
review rate, missed inspection rate, etc.

119

Mech-DLK

120

CHAPTER

ELEVEN

IMAGE PREPROCESSING TOOL

When the original image captured by the camera has problems such as darkness and indistinct object
features due to lighting or other factors, image preprocessing tools can be used.

The tool preprocesses images by adjusting parameters for brightness, contrast, and color balance.

The images before and after processing are as follows:

121

Mech-DLK

Hint: The image dataset will be changed directly after preprocessing, and then used as the training
and validation set in model training.

122

CHAPTER

TWELVE

DATA AUGMENTATION

In deep learning projects, the collected image datasets need to reflect all the situations on site, but in
many application projects, the sites may not have the corresponding collection conditions.

For example, sometimes it is impossible to collect image data under different rotation angles, different
moving ranges, etc.

For this issue, by adjusting the data augmentation parameters as shown in the figure below, more
adequate datasets can be generated based on the original data.

Attention: Please make sure that the contents of the augmented image datasets are consistent with
the actual situation on site. For example, when there is no rotation on site, if the rotation parameter
is adjusted, the model training effect will be affected.

123

Mech-DLK

Brightness

When the actual lighting changes greatly, the dataset under different lighting conditions can
be augmented by adjusting the brightness range.

Contrast

When the differences between the target objects and the background are not obvious, to better
train the model on the object features, the contrast range can be adjusted appropriately.

Translation

When the moving ranges of the on-site objects (bins, trays, etc.) are large, the data can
be augmented in terms of horizontal and vertical translation by adjusting the translation
parameters.

Rotation

When the placement orientations of the objects change greatly, the data can be augmented
by adjusting the rotation parameters according to the actual situation. Usually, you can keep
the default parameter settings.

Scale

When the height differences between the objects are large, the data can be augmented in
terms of different target object heights by adjusting the scale.

Flip horizontally

If the object to be recognized has left-right symmetry, this feature can be enabled.

Flip vertically

If the object to be recognized has up-down symmetry, this feature can be enabled.

124

Mech-DLK

125

CHAPTER

THIRTEEN

KEYBOARD SHORTCUTS

No. Feature Shortcut Note
1 New Project Ctrl + n/N
2 Save Project Ctrl + s/S
3 Open Project Ctrl + o/O
4 Undo labeling Ctrl + y/Y
5 Redo labeling Ctrl + z/Z
6 Copy labeling Ctrl + c/C
7 Paste labeling Ctrl + v/V
8 Select all labeling Ctrl + a/A
9 Delete labeling Delete Please move the cursor to the labeling section and select the labeling region to delete.
10 Ellipse Tool l / L
11 Polygon Tool p / P
12 Rectangle Tool r / R
13 Brush Tool b / B
14 Autofill Lasso Tool a / A
15 Labeling Eraser Tool e / E
16 Auto Labeling Tool t / T
17 Mask Polygon Tool Shift + p/P
18 Mask Brush Tool Shift + b/B
19 Mask Lasso Tool Shift + a/A
20 Mask Eraser Tool Shift + e/E
21 Grid Cutting Tool u / U
22 Grid Selection Tool i / I
23 Feature Group Labeling Tool f / F
24 ROI Tool o / O
25 Selection Tool s / S
26 Clear labeling of the current image Ctrl + d/D
27 Switch labeling display Ctrl + l/L
28 Switch prediction display Ctrl + p/P
29 Delete dataset image Delete Please move the cursor to the dataset section and select the image to delete.
30 Switching between datasets or in tables/dragging sliders ↑↓→← Please click on the corresponding component window or section first.
31 Image page turning: previous page Alt + ←
32 Image page turning: next page Alt + →

Tip: Hover over a tool icon in the interface to quickly view the keyboard shortcut corresponding to

126

Mech-DLK

that tool.

127

CHAPTER

FOURTEEN

ABOUT MECH-DLK SDK

14.1 What is SDK

The SDK of Mech-DLK supports C, C#, and other multi-language interfaces, and provides DLL libraries,
examples, etc. to meet the needs of users in model deployments and integrations.

14.2 System Requirements and Licensing

• Please make sure the dongle is authorized;

• Please ensure that the computer system, software and hardware meet the SDK deployment re-
quirements:

Operating system Windows 10 (recommended)/Windows 11
CPU Intel(R) Core(TM)i5 or later
Memory 8 GB or larger
Graphics card GeForce GTX 1650(4 GB) or later
Graphics driver 471.68 or later
.NET environment .net 4.61 or later
C/C++ C99 and above compilers

128

Mech-DLK

Attention: The configurations of the computer system and software and hardware have a great
impact on the performance of the SDK after deployment, so it is necessary to ensure that the above
requirements are met.

14.3 Location and Structure

Location

Structure

include: C API header files for C projects.
lib: Static library for the C API, used in C projects.
run_time: Dynamic runtime library for C/C# projects.
sample: SDK sample project, with C# samples at present.

14.3. Location and Structure 129

CHAPTER

FIFTEEN

GETTING STARTED WITH SDK

This section guides users who use the SDK for the first time to learn the relevant operation procedures,
and quickly create and complete a new project of the Mech-DLK SDK.

15.1 Requirements

Download Visual Studio 2019.

Install components for Visual Studio

Workloads → .NET desktop development .

Individual components → .NET Framework 4.6.1 target pack .

130

https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes

Mech-DLK

Make sure there are SDK files in the Mech-DLK folder.

15.2 Run the SDK C# Example Project

The SDK_Example project provides examples showing how to use the Mech-DLK SDK to implement
the required functions in the application.

Taking defect segmentation as an example, this section provides the required model and image dataset
to lead the user to run the SDK project:

• Click to download the image dataset

15.2. Run the SDK C# Example Project 131

https://docs.mech-mind.net//download/Mech-DLK/DefectDetection(NetworkPort).rar

Mech-DLK

• Click to download the model

1. Open the example project

Double-click the file SDK_Example.sln in the path shown below to open it with Visual
Studio 2019.

2. Referencing SDK

Right-click on Reference -> Add Reference. The reference manager window will pop up.
Click on Browse…, check the file mmind_dl_sdk_csharp.dll in the folder run_time and
click on OK.

15.2. Run the SDK C# Example Project 132

https://docs.mech-mind.net//download/Mech-DLK/DefectDetection(Model).rar

Mech-DLK

3. Build solution

Click on Build -> Build Solution to generate the executable file. Check the path generated
by the executable in the output section at the bottom of the interface.

15.2. Run the SDK C# Example Project 133

Mech-DLK

4. Add the “run_time”library

Copy all the dll format files in the folder below to the release directory of the executable
file generated in the previous step. If there are duplicate files, just overwrite them.

Original file location:

Target path:

5. Start project

Click on Start to run the program.

15.2. Run the SDK C# Example Project 134

Mech-DLK

Program interface after startup:

Load Image: Load the image to be inferred.

Load Model: Load a model in dlkpack format exported by Mech-DLK.

Infer: perform inference.

15.2. Run the SDK C# Example Project 135

Mech-DLK

Execution result:

15.2. Run the SDK C# Example Project 136

Mech-DLK

Attention: It takes a little longer to load the model for the first time. About 5
minutes. It is recommended to use multiple threads to call the corresponding interface.

15.3 Create a New Project

After ensuring that the system environment meets the requirements for integration, you can refer to the
following instructions to create a new project using the SDK. The instructions take .NET (Visual Studio
2019) as an example:

1. Create a new project

Open Visual Studio 2019, if you are to create a new project for the first time, please click
on File → New Project from the upper left corner, and on the Create New Project page,

15.3. Create a New Project 137

Mech-DLK

click Windows Desktop Wizard to create a Windows application.

15.3. Create a New Project 138

Mech-DLK

2. Configure the new project

Select .NET Framework 4.6.1 (4.6.1 and above are supported).

15.3. Create a New Project 139

Mech-DLK

3. Configure project properties

Right-click the new project name in the right project bar, and select Properties → Build
→ x64 for the target platform. You can also add the x64 active solutions platform via
the configuration manager.

15.3. Create a New Project 140

Mech-DLK

4. Add referencing

Right-click on Reference in the project section and select Add reference, click on Browse in
the pop-up window, check the file mmind_dl_sdk_csharp.dll under the run time folder,
and click on OK. If the file already exists in the window, select it directly.

5. Build solution

Click on Build → Build Solution on the menu at the top to generate an executable file.

15.3. Create a New Project 141

Mech-DLK

Copy all the DLL files in the run_time under the SDK folder to the exe directory. Then,
you can find the exe directory path in the red box in the figure below.

6. Start integration

You can refer to the code of the example project or API Reference Guide to complete
subsequent integrations.

15.3. Create a New Project 142

CHAPTER

SIXTEEN

API REFERENCE GUIDE

16.1 C# API

16.1.1 Interface Functions

1. setVisible

void setVisible(Boolean flag);

Set up the result visualization. If this function sets visualization to true, the SDK will
automatically fuse the predicted result with the input data, and the result will be in
Returned Results of Interface Function Inference. If you have high requirements on
performance, please do not set it to true.

Input parameter:

• flag: The boolean flag for visualization. The value defaults to false.

Returned value:

None

2. setConvertInseg

void setConvertInseg(Boolean Convertflag);

Set the processing of instance segmentation results. If true is input, the inference result
of instance segmentation models will have information of the inscribed rectangles and the
circumscribed rectangles, and the result will be in Returned Results of Interface Function
Inference. If you have high requirements on performance, please do not set it to true.

Input parameter:

Convertflag: The Boolean flag for drawing the inscribed and circumscribed rect-
angles of the instance masks. The value defaults to false.

Returned value:

None

3. LoadModel

SDKStatus LoadModel(string packPath);

143

Mech-DLK

Load the model exported by Mech-DLK. This interface is a synchronous interface and
may be blocked. It is recommended to use thread calls.

Input parameter:

• packPath: dlkpack file path.

Returned value:

• SDKStatus: 1000 means normal, other values mean errors. Please see Returned
Values of Interface Function Call for details.

4. Predict

InferPackResult Predict(Bitmap img);

Perform inference.

Input parameter:

• img: bitmap image.

Returned value:

InferPackResult: Inference result. See Returned Results of Interface Function
Inference for details.

16.1. C# API 144

Mech-DLK

16.1.2 Returned Values of Interface Function Call

Status code re-
turned

Enu-
mer-
ation
value

Note

STATUS_OK 1000 No interface call exception.
FILE_NOT_FOUND1001 File not found.
VALUE_OUTOF_LEFTRANGE1002 The parameter value exceeds the left limit. Example: If the parame-

ter value range is [0.0, 1.0], it will be generated when the parameter
value is less than 0.0.

VALUE_OUTOF_RIGHTRANGE1003 The parameter value exceeds the right limit. Example: If the param-
eter value range is [0.0, 1.0], it will be generated when the parameter
value is greater than 1.0.

MODEL-
TYPE_ERROR

1004 Model type error.

MODEL_REGISTEXCEEDLIMIT_ERROR1005 Number of registered models beyond the limit.
MODEL_CREATE_ERROR1006 Model creation error.
MODEL_DESTROY_ERROR1007 Model unregistration error.
MODEL_LOAD_ERROR1008 Model loading error.
MODEL_INIT_ERROR1009 Model initialization error.
MODEL_INFER_ERROR1010 Model inference error.
GET_RESULT_ERROR1011 Error getting model result .
IMG-
PATH_ERROR

1012 Invalid image file path.

IMGNULL_ERROR 1013 Empty image.
IMGCHAN-
NEL_ERROR

1014 Image channel error.

IMGDEPTH_ERROR1015 Image bit depth error.
IMG-
SIZE_ERROR

1016 Image size error.

INCONSIS-
TENT_IMAGEDEPTH_ERROR

1017 Inconsistent bit depths of two images.

INCONSIS-
TENT_IMAGESIZE_ERROR

1018 Inconsistent sizes of two images.

INCONSIS-
TENT_IMAGETYPE_ERROR

1019 Inconsistent types of two images.

IMGROI_ERROR 1020 Incorrect image ROI parameters.
IM-
GROI_NULL_ERROR

1021 Empty image ROI parameters.

IMG_CONVERTTYPE_ERROR1022 Incorrect conversion parameters for image color space transforma-
tion.

CON-
FIG_PARAM_ERROR

1023 Configuration parameter error.

UN-
KNOWN_ERROR

1024 Unknown error.

16.1. C# API 145

Mech-DLK

16.1.3 Returned Results of Interface Function Inference

Status
code re-
turned

Enumer-
ation
value

Note

status SDKSta-
tus

1000 means normal, other values mean errors. Please see Returned Values
of Interface Function Call for details.

type Type Model type. 0: unknown model; 1: defect segmentation; 2: instance seg-
mentation; 3: object detection; 4: image classification.

im-
ageShow

Bitmap Visualization image.

masks Bitmap[] Result masks.
labels int[] Inference result labels.
bboxes float[] Bounding box coordinates. Every 4 values (upper left X, upper left Y, lower

right X, lower right Y) are for one box.
external-
Rect

float[] Instance min circumscribed rectangle coordinates. Every 4 values (upper
left X, upper left Y, lower right X, lower right Y) are for one rectangle.

internal-
Rect

float[] Instance max inscribed rectangle coordinates. Every 4 values (upper left
X, upper left Y, lower right X, lower right Y) are for one rectangle.

confidence float[] Result confidences.

16.2 C API

16.2.1 Interface Functions

1. mmind_packInfer_create

int mmind_packInfer_create(Engine* engine, const char* packPath);

Parse the dlkpack file and create the corresponding inference engine.

Input parameters:

• engine: Inference engine information (pointer).

• packPath: dlkpack file path.

Returned value:

• int: 1000 means no error occurred; other values mean errors. Please see Returned
Values of Interface Function Call for details.

2. mmind_packInfer_destroy

int mmind_packInfer_destroy(Engine engine);

Unregister the inference engine.

Input parameter:

• engine: Inference engine information.

Returned value:

16.2. C API 146

Mech-DLK

• int: 1000 means no error occurred; other values mean errors. Please see Returned
Values of Interface Function Call for details.

3. mmind_packInfer_infer

int mmind_packInfer_infer(Engine engine, Image* img, Image* segMask, Image*␣
↪→insegMask, int& maskNumber, int* h, int* w, int& labelNumber, int* labels, int&
↪→ bboxNumber, float* bboxes, int& confidenceNumber, float* confidences);

Let the inference engine perform inference.

Input parameters:

• engine: Inference engine information.

• img: Input image.

• segMask: Mask result for defect segmentation.

• insegMask: Mask result for instance segmentation.

• maskNumber: Number of instance segmentation masks.

• h: Mask image height for instance segmentation.

• w: Mask image width for instance segmentation.

• labelNumber: Number of labels.

• labels: Inference result labels.

• bboxNumber: Number of bounding boxes.

• bboxes: Bounding box coordinates. Each 4 values (upper left X, upper left Y, lower
right X, lower right Y) are for one box.

• confidenceNumber: Number of result confidences.

• confidences: Result confidences.

Returned value:

• int: 1000 means no error occurred; other values mean errors. Please see Returned
Values of Interface Function Call for details.

16.2. C API 147

Mech-DLK

16.2.2 Returned Values of Interface Function Call

Status code re-
turned

Enu-
mer-
ation
value

Note

STATUS_OK 1000 No interface call exception.
FILE_NOT_FOUND1001 File not found.
VALUE_OUTOF_LEFTRANGE1002 The parameter value exceeds the left limit. Example: If the parame-

ter value range is [0.0, 1.0], it will be generated when the parameter
value is less than 0.0.

VALUE_OUTOF_RIGHTRANGE1003 The parameter value exceeds the right limit. Example: If the param-
eter value range is [0.0, 1.0], it will be generated when the parameter
value is greater than 1.0.

MODEL-
TYPE_ERROR

1004 Model type error.

MODEL_REGISTEXCEEDLIMIT_ERROR1005 Number of registered models beyond the limit.
MODEL_CREATE_ERROR1006 Model creation error.
MODEL_DESTROY_ERROR1007 Model unregistration error.
MODEL_LOAD_ERROR1008 Model loading error.
MODEL_INIT_ERROR1009 Model initialization error.
MODEL_INFER_ERROR1010 Model inference error.
GET_RESULT_ERROR1011 Error getting model result .
IMG-
PATH_ERROR

1012 Invalid image file path.

IMGNULL_ERROR 1013 Empty image.
IMGCHAN-
NEL_ERROR

1014 Image channel error.

IMGDEPTH_ERROR1015 Image bit depth error.
IMG-
SIZE_ERROR

1016 Image size error.

INCONSIS-
TENT_IMAGEDEPTH_ERROR

1017 Inconsistent bit depths of two images.

INCONSIS-
TENT_IMAGESIZE_ERROR

1018 Inconsistent sizes of two images.

INCONSIS-
TENT_IMAGETYPE_ERROR

1019 Inconsistent types of two images.

IMGROI_ERROR 1020 Incorrect image ROI parameters.
IM-
GROI_NULL_ERROR

1021 Empty image ROI parameters.

IMG_CONVERTTYPE_ERROR1022 Incorrect conversion parameters for image color space transforma-
tion.

CON-
FIG_PARAM_ERROR

1023 Configuration parameter error.

IN-
VALID_ENGINE_ID

2000 Invalid inference engine object.

UN-
KNOWN_ERROR

9000 Unknown error.

16.2. C API 148

CHAPTER

SEVENTEEN

PREREQUISITES FOR USING MECH-MIND SOFTWARE

To make sure Mech-Mind software can function properly, please complete the following actions:

• Check Interfaces and Drivers

• Set up Software License

• Check Python Version (Mech-DLK 2.1.0 and below)

• Turn off Windows Defender Firewall

• Prevent Windows from Updating (Recommended)

17.1 Check Interfaces and Drivers

Devices that communicate with Mech-Mind software are connected to the IPC through network inter-
faces. Mech-Mind software also require GPU to process data.

Therefore, it is recommended to check whether your network interfaces and GPU are functioning properly
first.

Check the following in Windows Control Panel:

• Network and Internet: make sure that the network interfaces used to connect to other devices
are functioning properly.

• Device Manager: under Display adapters and Network adapters, make sure the required
drivers for your network interfaces and GPU are installed.

17.2 Set up Software License

Mech-Mind uses CodeMeter from Wibu-Systems as the license system for its software.

• Plug the license dongle you received into the IPC.

• Run the CodeMeter installer received from Mech-Mind to install CodeMeter.

• Make sure that CodeMeter is running: in the system tray, check if the CodeMeter icon is
displayed.

Note:

149

Mech-DLK

• If you need to obtain a trial license that does not require a license dongle, please click here.

• If you need to update an existing license, please click here.

17.3 Check Python Version (Mech-DLK 2.1.0 and below)

Note: Starting from version 2.2.0, the Python 3.6.5 environment is integrated into Mech-DLK. This
section only applies to users of version 2.1.0 or below.

Mech-DLK requires Python 3.6.5 to function. This version of Python is automatically installed by
running Mech-Mind Software Environment installation package.

If you have multiple versions of Python installed, Mech-DLK may not be able to call the correct version
and thus may not function properly.

If not needed, please uninstall the other versions of Python.

Note: Using the corresponding Python executable installer of each version to uninstall
ensures that all related files are removed.

If you must keep the other versions of Python to satisfy other needs, please refer to Designate Python
Version for detailed instructions on resolving the problem.

17.4 Turn off Windows Defender Firewall

Windows Defender Firewall might block the normal communication between Mech-Mind software and
devices connected to the IPC. Therefore, it is necessary to turn off Windows Defender Firewall’s
protection for the network interfaces connected to devices that communicate with Mech-Mind software,
such as Mech-Mind Eye Industrial 3D Camera, robot controller, and PLC.

• Click on the magnifying glass icon in the taskbar, and search for Windows Defender Firewall.

• Click on Windows Defender Firewall in the search results to open it, and click on Advanced
Settings.

17.3. Check Python Version (Mech-DLK 2.1.0 and below) 150

Mech-DLK

• In the pop-up window, click on Windows Defender Firewall Properties.

17.4. Turn off Windows Defender Firewall 151

Mech-DLK

• Under the Domain Profile tab, click on Customize… next to Protected network connections.

17.4. Turn off Windows Defender Firewall 152

Mech-DLK

• In the pop-up window, uncheck all the network interfaces connected to devices that communicate
with Mech-Mind software. Then, click on OK.

17.4. Turn off Windows Defender Firewall 153

Mech-DLK

• Repeat steps 4 and 5 for the Private Profile and Public Profile tabs.

17.4. Turn off Windows Defender Firewall 154

Mech-DLK

17.5 Prevent Windows from Updating (Recommended)

Windows updates might force the IPC to shut down/restart during production in order to complete the
updates, which would end Mech-Mind software and thus affect normal production. Therefore, we highly
recommend preventing Windows from updating to avoid unexpected downtime.

Note: If you choose to keep Windows Update enabled, please take measures to ensure that shut-
down/restart occurs during planned downtime, such as setting active hours for Windows Update.

17.5.1 Disable Windows Update

• Click on the magnifying glass icon in the taskbar, and search for Services.

• Click on Services in the search results to open it, and scroll down to find Windows Update.
Double-click on it to open Windows Update Properties.

• Click on Stop to stop the service first.

17.5. Prevent Windows from Updating (Recommended) 155

Mech-DLK

• In the drop-down menu of Startup type, select Disabled, and then click on Apply.

17.5. Prevent Windows from Updating (Recommended) 156

Mech-DLK

• Click on the Recovery tab, and change the response for all failures to Take No Action. Then,
click on OK.

17.5. Prevent Windows from Updating (Recommended) 157

Mech-DLK

17.5.2 Disable Windows Update Medic Service

Windows Update Medic Service fixes problems in Windows Update and ensures that your computer
continues to receive updates. That is, even if you have disabled Windows Update, Windows Update
Medic Service will eventually re-enable it. Therefore, it is necessary to disable Windows Update Medic
Service as well.

Windows does not allow you to disable Windows Update Medic Service through simple button-clicking.
To disable it, you’ll need to go to the Registry Editor as instructed below.

• Click on the magnifying glass icon in the taskbar, and search for regedit.

• Click on Registry Editor in the search result to open it.

• In the left pane, navigate to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\WaaSMedicSvc.
Then in the right pane, right-click on Start and select Modify.

17.5. Prevent Windows from Updating (Recommended) 158

Mech-DLK

• In the pop-up window, change Value data to 4, and then click on OK.

• Right-click on FailureActions and select Modify.

17.5. Prevent Windows from Updating (Recommended) 159

Mech-DLK

• In the pop-up window, change the values in the fifth column from the left for 00000010 and
00000018 to 01. Then, click on OK.

• Return to Services, find Windows Update Medic Service and double-click to open it. Now
the Startup type in the General tab should be Disabled, and all responses for failures in the
Recovery tab should be Take No Action.

17.5. Prevent Windows from Updating (Recommended) 160

Mech-DLK

17.5. Prevent Windows from Updating (Recommended) 161

CHAPTER

EIGHTEEN

TERMINOLOGY

ROI A region of interest is a region selected from an image. The region is the focus of the analyses of
the images. Selecting regions of interest helps reduce processing time and improve accuracy

Labeling Labeling refers to the process of selecting object features or contours from images and adding
labels indicating features or defects to the selections, thus telling the model what contents it should
learn.

Dataset A dataset contains the original data and labelings. In Mech-DLK, datasets are saved in dlkdb
files.

Unlabeled data Original data without and labelings.

Training set The part of the dataset allocated for model training.

Validation set The part of the dataset allocated for model validation.

OK image In defect defection, an OK image is an image that contains no defects.

NG image in defect detection, an NG image is an image that contains any defects.

Training Training refers to the process of letting the model learn on the training set.

Validation Validation refers to the process of verifying the trained model on the validation set.

Accuracy Accuracy refers to the ratio of the number of correctly predicted samples to the total number
of samples in the validation set when validating the trained model.

Loss Loss is a measure of the inconsistency between the model’s predictions on the validation set and
the ground truth of the validation set.

Epochs The number of times the model goes through the training set when training.

162

CHAPTER

NINETEEN

COMPATIBILITY

19.1 Instance Segmentation

Mech-
Vision
version

Deep learning
environment
version

Mech-Vision Step Mech-DLK
version for
model

Model and con-
figuration file
extensions

1.4.0 1.4.0 Instance Segmentation * 1.4.0 .pth/.py
1.5.x 2.0.0/2.1.0 1.4.0 .pth/.py

2.0.0/2.1.0 .dlkmp/.dlkcfg
1.6.0 2.0.0/2.1.0 1.4.0

2.0.0/2.1.0
No deep learn-
ing environment
required

Deep Learning Inference (DLK
2.1.0/2.0.0)

2.2.0

1.6.1 No deep learn-
ing environment
required

Deep Learning Model Package CPU
Inference/ Deep Learning Inference
(DLK 2.2.0+)

2.2.1 .dlk-
packC/.dlkpack

* Please start the deep learning server for the Step.

163

Mech-DLK

19.2 Image Classification

Mech-
Vision
version

Deep learning
environment
version

Mech-Vision Step Mech-DLK
version for
model

Model and con-
figuration file
extensions

1.4.0 1.4.0 Image Classification * 1.4.0 .pth/.json
1.5.x 2.0.0/2.1.0 Image Classification * 1.4.0 .pth/.json

Deep Learning Inference (DLK
2.1.0/2.0.0)

2.0.0/2.1.0 .dlkpack

1.6.0 2.0.0/2.1.0 Image Classification * 1.4.0
No deep learn-
ing environment
required

Deep Learning Inference (DLK
2.1.0/2.0.0)

2.0.0/2.1.0

Deep Learning Model Package Infer-
ence (DLK 2.2.0+)

2.2.0

1.6.1 No deep learn-
ing environment
required

Deep Learning Model Package CPU
Inference/ Deep Learning Inference
(DLK 2.2.0+)

2.2.1 .dlk-
packC/.dlkpack

* Please start the deep learning server for the Step.

19.3 Object Detection

Mech-
Vision
version

Deep learning
environment
version

Mech-Vision Step Mech-DLK
version for
model

Model and con-
figuration file
extensions

1.4.0 1.4.0 Object Detection * 1.4.0 .pth/.py
1.5.x 2.0.0/2.1.0 Object Detection * 1.4.0 .pth/.py

Deep Learning Inference (DLK
2.1.0/2.0.0)

2.0.0/2.1.0 .dlkpack

1.6.0 2.0.0/2.1.0 Object Detection * 1.4.0
No deep learn-
ing environment
required

Deep Learning Inference (DLK
2.1.0/2.0.0)

2.0.0/2.1.0

Deep Learning Model Package Infer-
ence (DLK 2.2.0+)

2.2.0

1.6.1 No deep learn-
ing environment
required

Deep Learning Model Package CPU
Inference/ Deep Learning Inference
(DLK 2.2.0+)

2.2.1 .dlk-
packC/.dlkpack

* Please start the deep learning server for the Step.

19.2. Image Classification 164

Mech-DLK

19.4 Defect Segmentation

Mech-
Vision
version

Deep learning envi-
ronment version

Mech-Vision Step Mech-DLK
version for
model

Model and config-
uration file exten-
sions

1.4.0 1.4.0 Defect Detection * 1.4.0 .pth/.py
1.5.x 2.0.0/2.1.0 Deep Learning Inference

(DLK 2.1.0/2.0.0)
2.0.0/2.1.0 .dlkpack

1.6.0 No deep learning
environment re-
quired

Deep Learning Inference
(DLK 2.1.0/2.0.0)

2.0.0/2.1.0 .dlkpack

Deep Learning Model
Package Inference (DLK
2.2.0+)

2.2.0

1.6.1 No deep learning
environment re-
quired

Deep Learning Model
Package Inference (DLK
2.2.0+)

2.2.1 .dlkpack

* Please start the deep learning server for the Step.

19.5 Fast Positioning

Mech-
Vision
version

Deep learning envi-
ronment version

Mech-Vision Step Mech-DLK
version for
model

Model and config-
uration file exten-
sion

1.6.0 No deep learning
environment re-
quired

Deep Learning Model
Package Inference (DLK
2.2.0+)

2.2.0 .dlkpack

1.6.1 No deep learning
environment re-
quired

Deep Learning Model
Package Inference (DLK
2.2.0+)

2.2.1 .dlkpack

19.4. Defect Segmentation 165

CHAPTER

TWENTY

SUPPORT

This section provides information that help you solve problems encountered in using Mech-Mind Vision
System.

20.1 Update Software License

CodeMeter will notify you if your license(s) is about to expire. In such case, please contact Mech-Mind
Technical Support to request an update.

Once the update has been arranged, you’ll need to export a license request file to send to Mech-Mind
first. Then, Mech-Mind will send back a license update file that extends the duration of your license.

20.1.1 Export License Request File

Note: Before proceeding, please make sure that:

• CodeMeter is installed;

• License dongle(s) is inserted.

1. Click on in the system tray to open CodeMeter Control Center.

2. Select the license dongle whose license needs to be updated, and click on License Update.

166

Mech-DLK

3. Click on Next in the pop-up window.

20.1. Update Software License 167

Mech-DLK

4. Select Create license request, and then click on Next.

20.1. Update Software License 168

Mech-DLK

5. Select Extend existing license, and then click on Next.

20.1. Update Software License 169

Mech-DLK

6. Choose Mech-Mind as the vendor, and then click on Next.

20.1. Update Software License 170

Mech-DLK

Note: The company code may differ.

7. On the next page, click on .. to select a location for saving the license request file, and then click
on Commit.

20.1. Update Software License 171

Mech-DLK

Hint: If licenses on multiple license dongles need to be updated, please repeat steps 2 to 7 to
export a license request file for each dongle.

8. Send the license request file to Mech-Mind Technical Support.

20.1.2 Update the License

After you send the license request file, Mech-Mind will send back a license update file in WIBUCMRAU
format.

Double-click on this file to update the corresponding license.

Follow the steps below to check if the license has been successfully updated.

1. Click on in the system tray to open CodeMeter Control Center.

2. Select the license dongle you’d like to check, and then click on WebAdmin in the lower right.

20.1. Update Software License 172

Mech-DLK

3. The CodeMeter WebAdmin webpage will be opened, and you can check the date under Valid
Until to see if the license has been updated.

20.1. Update Software License 173

Mech-DLK

Note:

• The Valid Until date for a perpetual license is n/a.

• You can select a different license dongle to view by clicking on the Container tab at the top.

If for some reason, double-clicking on the WIBUCMRAU file does not update your license, please follow
the steps below to manually import the license update file.

1. Click on in the system tray to open CodeMeter Control Center.

2. Select the license dongle whose license needs to be updated, and click on License Update.

3. Click on Next in the pop-up window.

20.1. Update Software License 174

Mech-DLK

4. Select Import license update, and then click on Next.

20.1. Update Software License 175

Mech-DLK

5. Click on .. to select the license update file, and then click on Commit.

20.1. Update Software License 176

Mech-DLK

20.2 Obtain a Trial Software License

Mech-Mind uses CodeMeter from Wibu-Systems as the license system for its software.

We provide trial software licenses that do not require a license dongle. Please contact Mech-Mind Sales
to obtain a ticket code before proceeding.

20.2.1 Install CodeMeter

Please run the CodeMeter installer received from Mech-Mind to install CodeMeter.

20.2.2 Activate the License

To activate your license, the ticket code sent to you via email is required. It is a 25-character string
made up of numbers, alphabets, and hyphens.

1. Go to Mech-Mind License WebDepot.

2. Copy and paste the ticket code into the Ticket field, and click on Next.

20.2. Obtain a Trial Software License 177

http://license.mech-mind.net/

Mech-DLK

3. Select the license, and click on Activate Selected Licenses Now.

4. When the pop-up window displays the following message, click on OK to complete the license

20.2. Obtain a Trial Software License 178

Mech-DLK

transfer:

License transfer completed successfully!

5. Open CodeMeter Control Center, and you should see the license displayed.

20.2. Obtain a Trial Software License 179

Mech-DLK

20.3 Designate Python Version

Mech-DLK requires Python 3.6.5 to function. If you have multiple versions of Python installed, Mech-
DLK may not be able to call the correct version and thus may not function properly.

If not needed, please uninstall the other versions of Python.

Note: Using the corresponding Python executable installer of each version to uninstall
ensures that all related files are removed.

If you must keep the other versions of Python, please follow the steps below to make sure Mech-DLK
can call the correct version.

1. Right-click on My PC and select Properties.

2. Click on Advanced system settings, which may be on the left or right of the pop-up window,
depending on the edition of Windows you are using.

3. Click on Environment Variables.

20.3. Designate Python Version 180

Mech-DLK

4. Click on Path, and then click on Edit.

20.3. Designate Python Version 181

Mech-DLK

5. Select the path that ends with \Python36\, and click on Move Up until this path is at the top
of the list.

20.3. Designate Python Version 182

Mech-DLK

6. Similarly, move the path that ends with \Python36\Scripts\ to the top of the list. Then, click
OK to save the changes.

20.3. Designate Python Version 183

Mech-DLK

20.3. Designate Python Version 184

CHAPTER

TWENTYONE

FAQ

1. Does it work to simulate changes in lighting conditions during data collection by
manually adjusting the camera exposure or adding supplemental light?

No. Simulated lighting conditions may not reflect the actual conditions accurately, and
thus image data collected under such conditions cannot provide accurate object features
to train the model. Therefore, if the lighting conditions on site change over the day,
please collect image data respectively under different conditions.

2. In the actual application, the camera is fixed, and the incoming objects’positions vary
slightly. Does it work to simulate the position changes of the objects by moving the
camera during data collection?

No. The camera should be fixed in position before any data collection. Moving the
camera during data collection will affect the extrinsic parameters of the camera and the
training effect.

For the case in question, setting a larger ROI can capture the changes in object position.

3. If the previously used camera has unsatisfactory imaging quality and is replaced by a
new camera, is it necessary to add the images taken by the old camera to the dataset?

No. After camera replacement, all data used for model training should come from the
new camera. Please conduct data collection again using the new camera and use the
data for training.

4. Will changing the background affect model performance?

Yes. Changing the background will lead to recognition errors, such as false recognition
or failure to recognize a target object. Therefore, once the background is set in the early
stage of data collection, it is best not to change the background afterward.

5. Is it possible to use the image data collected with different camera models at different
heights together to train one model?

Yes, but please work on the ROI settings. Select different ROIs for images taken at
different heights to reduce the differences among images.

6. For highly reflective metal parts, what factors should be taken into consideration
during data collection?

Please avoid overexposure and underexposure. If overexposure in parts of the image is
inevitable, make sure the contour of the object is clear.

7. If the model performs poorly, how to identify the possible reasons?

185

Mech-DLK

Factors to consider: quantity and quality of the training data, data diversity, on-site ROI
parameters, and on-site lighting conditions.

• Quantity: whether the quantity of training data is enough to make the model achieve
good performance.

• Quality: whether the data quality is up to standard, whether images are clear enough
and are not over-/underexposed.

• Data diversity: whether the data cover all the situations that may occur on-site.

• ROI parameters: whether the ROI parameters for data collection are consistent with
those for the actual application.

• Lighting conditions: Whether the lighting conditions during the actual application
change, and whether the conditions are consistent with those during data collection.

8. How to improve unstable model performance due to complicated on-site lighting con-
ditions, e.g., objects are covered by shadows?

Please add shading or supplemental light as needed.

9. Why does the inconsistency between the ROI settings of on-site data and training
data affect the confidence of instance segmentation?

The inconsistency will result in objects being out of the optimal recognition range of
the model, thus affecting the confidence. Therefore, please keep the ROI settings of the
on-site data and training data consistent.

10. What scenarios is the Super Model for boxes suitable for?

It is suitable for palletizing/depalletizing boxes of single or multiple colors and surface
patterns. However, please note that this Super Model is only applicable to boxes placed
in horizontal layers and are not at an angle to the ground.

11. How to collect data for the Super Model for boxes?

Please test the Super Model first. If it cannot segment correctly sometimes, collect about
20 images of situations where the model does not perform well.

12. Does the image classification model work without a GPU?

No.

13. How to upgrade the earlier-version deep learning environment?

Please see Install the Mech-Mind Software Environment for instructions on upgrading
the deep learning environment.

14. ROI position deviations may occur when opening old projects with the newer-version
Mech-DLK.

The ROI will be corrected after clicking on Validate.

186

	Mech-DLK V2.2.1 Release Notes
	Installation
	Train the First Model
	Fast Positioning
	Defect Segmentation
	Classification
	Object Detection
	Instance Segmentation
	Module Cascading
	Running Mode
	Image Preprocessing Tool
	Data Augmentation
	Keyboard Shortcuts
	About Mech-DLK SDK
	Getting Started with SDK
	API Reference Guide
	Prerequisites for Using Mech-Mind Software
	Terminology
	Compatibility
	Support
	FAQ

