Mech-DLK

Mech-Mind

Apr 11, 2022

Quick Guide to Deep Learning
Deep Learning Applications
Typical Scenarios

Mech-DLK Handbook

FAQ

CONTENTS

50
55

70

i o/

MECH MIND Mech-DLK

Integrating deep learning algorithms into mature vision-based products, Mech-Mind Robotics has pro-
vided efficient and comprehensive solutions for clients in the automotive, 3C (computer, communication,
consumer), manufacturing, and logistics industries all over the world, solving many real-world intelli-
gent recognition problems including image classification, defect detection, feature recognition, etc.

Getting Started
Quick Guide to Deep Learning

Deep Learning Applications

Connnecting

Instance Segmentation

Identify object contour, position, and class in images

CONTENTS 1

2

MECH MIND Mech-DLK

Image Classification

Assign a class to an image of a single object

Applying Deep Learning to Typical Projects

Box Palletizing/Depalletizing

Project workflow of box palletizing/depalletizing

Sack Palletizing/Depalletizing
Project workflow of sack palletizing/depalletizing

Mech-DLK User Guide & Deep Learning Environment Configuration

CONTENTS 2

i o/

MECH MIND Mech-DLK

Mech-DLK Handbook

Deep learning training software for building deep learning models

DL Environment

Environment Configuration

Deep learning environment configuration and troubleshooting

FAQs

w

CONTENTS

i o/

MECH MIND Mech-DLK

FAQ

FAQs about deep learning projects

CONTENTS 4

CHAPTER
ONE

QUICK GUIDE TO DEEP LEARNING

1.1 Definitions

Deep learning means solving problems by learning the features of data.

Data collection and labeling: Take pictures of the objects that need to be recognized and
then label the features that need to be recognized in the pictures.

Model training: Train a deep learning model on the object features from the images and
labels and save the trained model as a file.

Application: Apply the model to recognition problems in actual project scenarios with
input data similar to the training data.

Manual Training Auto-
e @

Labeling Predicting

BestModel.xxx

Labeling Data Model File Data in the actual project

Figure 1. The process from data collection to application of a deep learning model

1.2 Usage

What problems can deep learning solve?

For different problems, the deep learning products developed by Mech-Mind Robotics provide different
solutions:

i o/

MECH MIND Mech-DLK

Instance Segmentation \ Classification
Typical Applications

o Palletizing/depalletizing of cartons, sacks, o Classification, size/orientation recognition
turnover boxes of workpieces for machine tending

e Machine tending o Judging correctness of workpiece placing for

e Order picking assembly and picking

o Logistics parcel picking « Distinguishing box/sack colors and types

for palletizing/depalletizing

Functions

e Locating e Classifying
e Classifying

Attention: Different deep learning algorithms have different specialties, which are not mutually
exclusive. Whether to select one algorithm or a combination of algorithms depends on the actual
requirements of a project.

1.3 Application Process

Step 1. Environment configuration: Please see Environment Configuration for details.
Step 2. Data preparation: Collect, label, and review the data.

1. Ensure that the image data required for deep learning is collected under conditions completely
consistent with the actual application scenario.

2. Select the algorithm according to the project requirements and label the dataset by the rules.

3. Review whether there are incorrectly labeled data (Mech-DLK helps efficiently prepare the dataset
required for training).

1.3. Application Process 6

i o/

MECH MIND

Mech-DLK

Fle Edit Settings Help

Camera lens *

m o
¢ BB

Import

Name. Set Label Pred

210514-15070... Train label 1
514-15070... V.

. Train

210514-15070... Train
15070... Val.
210514-15070... Train

13 210514-15070... Train

Labeled Images

Comment

W abel_1
W rabel 2

Figure 2. Labeling data in Mech-DLK

Modules

Semantic Segmentation

l

Classification

[Training

Validate

Step 3. Training: Use the labeled data to train the required deep learning model in Mech-DLK. Please
see Mech-DLK Quick Start for details.

Edit Setings

Camera lens

Import v
Noa Name

1 210514-15070...
210514-15070...
514-15070.

514. Train

.. Train

15070... Train

514-15070.. Train
210514-15070...

15070.

Labeled Images

Comment

Classes Current image

Defect

L O e e S —
0 50 100 150 200

Epoch

Figure 3. Training a deep learning model in Mech-DLK

Modules

n
Semantic Segmentation

Parameters Training Validation

Training Info

Optimal Result

09154

100%
00:00:00

Show chart

Validate

1.3. Application Process

i/
Mech-DLK

MECH MIND

Step 4. Evaluate the training effect: Use the reserved test set to verify whether the model’ s
performance meets the requirements.
Step 5. Application: The tested model that meets the project requirements can then be used in the

actual project.

1.3. Application Process

CHAPTER
TWO

DEEP LEARNING APPLICATIONS

2.1 Instance Segmentation

2.1.1 Introduction to Instance Segmentation

What Instance Segmentation Does

Instance segmentation solves the problems of what is there, what it is, and where it is, i.e., whether
there is a target object in a picture, what kind of object it is, and where it is in the picture.

Examples:

e If the target objects are simply cartons, an instance segmentation model will judge whether there
are cartons in an image (it will not recognize any other objects). If so, it will draw the contour
of each carton and output the carton label indicating the object class (the label has been created
during the data labeling process); otherwise, it will not output any results.

Instance

Figure 1. An instance segmentation model recognizing and labeling every carton

o If the target objects are of multiple classes, such as soap, toothbrush, shampoo, etc., an instance
segmentation model will judge whether there are objects of these classes in an image. If so, it will
draw the contour of each item and apply the corresponding label; otherwise, it will not output any
results.

i o/

MECH MIND Mech-DLK

Instance
segmentation|

Figure 2. An instance segmentation model recognizing and labeling various objects

Typical Industrial Application Scenarios of Instance Segmentation

o Palletizing/depalletizing: Objects such as cartons, turnover boxes, sacks, etc. need to be
removed from a pallet and placed on another pallet or equipment, such as bag break station,
conveyor belt, etc.

Figure 3. Segmenting sacks in an image in a palletizing/depalletizing project

e Machine tending: Handle and grasp complex workpieces, structural parts, irregular parts, etc.,
in the automotive, steel, machinery, and other industries.

2.1. Instance Segmentation 10

i o/

MECH MIND Mech-DLK

Figure 4. Segmenting workpieces in an image in a machine tending project

e Order picking: Frequently seen picking scenarios in various e-commerce warehouses include batch
picking, discrete picking, sorting, etc. Supports various objects, including inflatable packaging,
transparent packaging, bottles, aluminum cans, and irregularly-shaped goods like pots and pans.

Soap Soap

Figure 5. Segmenting goods in an image in an order picking project

e Logistic parcel picking: Supports picking various commonly seen packages such as shipping
bags, postal envelopes, shipping boxes, padded envelopes, etc., and a variety of irregularly-shaped
packages.

2.1. Instance Segmentation 11

i o/

MECH MIND Mech-DLK

Figure 6. Segmenting shipping boxes and bags in an image in a logistic parcel picking project

Application Process of Instance Segmentation

Given enough image data from actual usage scenarios with object contours and classes correctly labeled,
an instance segmentation model will learn how to segment the objects by itself. The application process
of instance segmentation is as follows:

e Collect the Training Data: Take enough pictures of target objects with the camera.
e Label the Training Data: Label the contour and class of each object on each picture.
e Train the Model: Feed the labeled data to the instance segmentation model for training.

e Use the Model: Apply the trained model in an actual project.

2.1.2 Collect the Training Data

Attention: Collecting data is one of the most critical parts of a deep learning project. The final
effect of the model largely depends on the quality of the training data. A high-quality dataset is a
prerequisite for effective model training and accurate prediction.

Check the Data Collection Environment

1. Please avoid conditions including overexposure, underexposure, color distortion, blurri-
ness, blockage, etc., that will result in the loss of the features on which the deep learning model
relies and thereby affect the model’ s performance.

2.1. Instance Segmentation 12

i o/

MECH MIND Mech-DLK

Bad example: Overexposure, Good example: Normal exposure.

11T

Optimization suggestion: Add shading.

Bad example: Underexposure. Good example: Normal exposure.

Optimization suggestion: Add supplementing light.

2.1. Instance Segmentation 13

i o/

MECH MIND Mech-DLK

Bad example: Color distortion. Good example: Normal color.

i 41131

L

Optimization suggestion: Please adjust the camera’s white balance to avoid color distortion.

Bad example: Blurry imaging. Good example: Clear imaging.

Optimization suggestion: Only take pictures when the camera and the objects are still.

2.1. Instance Segmentation 14

i o/

MECH MIND Mech-DLK

Bad example: Blocked by the robot arm. Bad example: Blocked by human staff.

Optimization suggestion: Ensure there is no robotic arm or human staffin the camera’s field of
view.

Figure 1. Examples of data collection environment conditions

2. Please ensure that the backgrounds, perspectives, and camera distances from the objects
for data collection are consistent with those of the actual application scenarios. Any inconsistencies
will reduce the performance of the model in the actual application. In severe cases, data need to be
recollected and the model needs to be re-trained. Therefore, please confirm the detailed conditions
of the actual application scenario before data collection.

Bad example: The training data's background (left) is inconsistent with that of the scenario (right).

Optimization suggestion: Ensure that the background of the training data is consistent with that of
the scenario.

2.1. Instance Segmentation 15

i o/

MECH MIND Mech-DLK

Bad example: The training data’s field of view (left) is inconsistent with that of the scenario (right).

Mo
—— oot

e, T

AT R
AR

Optimization suggestion: Ensure that the training data’s field of view is consistent with that of the
scenario.

Bad example: The training data's camera height (left) is inconsistent with that of the scenario
(right).

Optimization suggestion: Ensure that the training data’s camera height is consistent with that of
the scenario (right).

Figure 2. Inconsistencies between data collection environment and application scenario

2.1. Instance Segmentation 16

i o/

MECH MIND Mech-DLK

Quantity of Data to Collect

o If there is only one object class, please collect around 50 images.

« If there are multiple object classes, please collect around 30 images for each class. Total number
of images to collect = 30 * number of classes.

e The above is a general guideline for the quantity of data to collect, and typical industrial applica-
tions have more specific requirements. Please see Data Collection Examples from Past Projects for
an example.

Attention: If the training dataset is too small, the model will not have enough samples and can
not be trained effectively; the test error rate will also be high. If the training dataset is too large, the
training time will be significantly increased. Please make sure the size of the dataset is appropriate
for actual needs.

Object Placing for Data Collection
All different placing conditions should be included in the dataset, and the number of images for each
placing condition should be reasonably allocated based on the actual project conditions.

For example, if the objects come in horizontal and vertical poses in the actual application, but only
images of horizontal incoming objects are collected and used for training, then the resulting model’ s
performance on the vertical objects cannot be guaranteed.

Another example is that, if the objects come overlapping in the actual application, but only images of
separately placed objects are collected and used for training, then the resulting model’ s performance
on the overlapping objects cannot be guaranteed.

Therefore, when collecting data, please take all circumstances in the actual application into
consideration as much as possible. Factors include the following:

o All object orientations that may appear in the actual application;
o All object positions that may appear in the actual application;

« All spatial relationships between objects that may appear in the actual application.

Attention: If some circumstances are omitted from data collection, the deep learning model will
not be trained properly for and will fail to output satisfactory results in such circumstances. In this
case, please include data on omitted circumstances to avoid errors.

1. Object orientation

2.1. Instance Segmentation 17

2

MECH MIND Mech-DLK

Figure 3. Objects’ different sides face up

2. Object position

Figure 4. Objects are in the center, along the edges, or in the corners of the bin

2.1. Instance Segmentation 18

2

MECH MIND Mech-DLK

Camera camera

Figure 5. Objects are on different layers

3. Spatial relationship between objects

Figure 6. Objects are separately placed or overlapping

Figure 7. Objects are closely fitted

2.1. Instance Segmentation 19

i o/

MECH MIND Mech-DLK

Use Mech-Vision to Collect Data

After checking the data collection environment, determining the data quantity to collect, and listing all
the possible ways of object placing, please use the following Steps in Mech-Vision to collect the image
data. See Capture Images From Camera for detailed instructions.

Capture Images from Camera (1)

Image/Depth Image/Color Cloud(XYZ) Cloud(XYZ-RGB)
Camera Depth Image Camera Color Image Point Cloud Colored Point Cloud

Image Image | Siring-
Image Image | Indices

Save Images and Step Properties (1) p ¥

Figure 8. Data collection Steps in Mech-Vision

Data Collection Examples from Past Projects

Metal workpiece, single class

Data quantity: 50 pictures for single-class objects.
Orientation: The objects may lie flat or stand on sides, both of which need to be considered.

Position: The objects may be in the center, along the edges, or in the corners of the bin, or placed
on different layers.

Spatial relationship: The objects may be overlapping, and occasionally parallelly placed.

The following are some examples of the images collected:

2.1.

Instance Segmentation 20

i o/

MECH MIND Mech-DLK

Figure 9. Sparsely scattered (top left), densely scattered (top right), overlapping (bottom left), and very

densely scattered (bottom right)
MECH MIND

Figure 10. Lying flat, standing on sides, overlapping, and parallelly placed

2.1. Instance Segmentation 21

i o/

MECH MIND Mech-DLK

Beauty and personal care products, seven classes

Classification is required as there is more than one class of objects.

Cases, where products of the same class are placed in many orientations and products of multiple
classes are placed together, need to be considered to fully capture the object features.

For cases where only a single class of objects are placed in the bin, five images for each class should
be collected. For cases where objects of multiple classes are mixed in the bin, the total number of
images to collect should be (20 * number of classes).

Orientation: The objects may lie flat, stand on sides, or lean at an angle. All sides of the objects
need to be captured.

Position: The objects may be in the center, along the edges, or in the corners of the bin.

Spatial relationship: The objects may be overlapping, occasionally parallelly placed, and tightly
fitted.

The following are some examples of the images collected:

One class

2.1.

Instance Segmentation 22

i o/

MECH MIND Mech-DLK

Figure 11. In the corners (top left), tightly fitted (top right), closely placed (bottom left), and sparsely
scattered (bottom right)

Multiple classes

Figure 12. Closely placed, jammed in bin corners, and scattered and overlapping

2.1. Instance Segmentation 23

i o/

MECH MIND Mech-DLK

Track shoe unit, multiple classes (models)

e Number of images to collect: 30 * number of models.
e Orientation: Only the case where the front face is up needs to be considered.

e Position: Relatively simple. Only objects in the top, middle, and bottom layers need to be consid-
ered.

« Spatial relationship: The objects are orderly placed and tightly fitted.

The following are some examples of the images collected:

Figure 13. Objects in the top, middle, and bottom layers

Metal workpiece, single class

e Data quantity: The objects are of a single class and are placed in a single layer, so 50 images need
to be collected.

e Orientation: Only the case where the front face is up needs to be considered.
o Position: The objects may be in the center, along the edges, or in the corners of the bin.
e Spatial relationship: The case where the objects are tightly fitted needs to be considered.

The following are some examples of the images collected:

Figure 14. One full layer, along the edges, and in the corners of the bin

2.1. Instance Segmentation 24

i o/

MECH MIND Mech-DLK

Metal workpiece, single class

e The objects are stacked in multiple layers, and 30 images need to be collected.
e Orientation: Only the case where the front face is up needs to be considered.

e Position: The objects may be in the center, along the edges, or in the corners of the bin, as well as
in the top, middle, and bottom layers.

« Spatial relationship: The case where the objects are tightly fitted needs to be considered.

The following are some examples of the images collected:

Figure 15. In the top layer (top left), a small amount in the top layer (top right), a full bottom layer
(bottom left), and in the bottom layer along the bin edges (bottom right)

2.1. Instance Segmentation 25

i o/

MECH MIND Mech-DLK

2.1.3 Label the Training Data

Create Label(s)

Please confirm whether the project requires the classification of objects. If so, please create multiple
labels, each corresponding to an object class; otherwise, please create one label.

Create labels

Figure 1. Cases of classification with multiple labels and no classification with a single label

Attention: Label names should be relevant to the objects and easily recognizable. Please do not
use meaningless names like a, b, tmp, etc. Label names should only include letters or numbers.

Determine Method of Labeling

1. Label the contour of the upper surface: Suitable for orderly-placed and regularly-shaped
objects, such as cartons, medicine boxes, rectangular workpieces, etc. Pick points are calculated
based on the contour of the upper surface.

2.1. Instance Segmentation 26

i o/

MECH MIND Mech-DLK

Bad example: Label the entire object. Good example: Label only the involved part of
the object surface.

Figure 2. Label the contour of the upper surface

2. Label the contour of the entire object: Suitable for sacks, various workpieces, etc. Labeling
the contour of the entire object is a general labeling method.

Good example: Label the outer Good example: Label the outer Good example: Label the outer
contour. contour. contour.

Figure 3. Label the contour of the entire object

3. Special cases: Some picking tasks involve special end effectors and/or picking methods.

Case #1: The suction cup needs to fit perfectly with the bottle caps (requires high accuracy),
thus only the contour of the bottle caps needs labeling.

2.1. Instance Segmentation 27

i o/

MECH MIND Mech-DLK

Good example: Label the bottle caps.

Figure 4. Only label the bottle caps

Case #2: The rotor picking task involves distinguishing the orientation of rotors. Only the
middle parts where the orientation is easily recognizable need labeling and the thin rods at both
ends should be excluded.

Good example: Label the middle part of the rotor.

Figure 5. Only label the middle parts of rotors

2.1. Instance Segmentation 28

i o/

MECH MIND Mech-DLK

Case #3: The pick point is required to be in the middle part of the metal workpiece, so only the
middle parts need labeling, and the two ends should be excluded.

Good example: Mark the middle part of the metal work-
piece.

Figure 6. Only label the middle parts of metal workpieces

Use Mech-DLK to Label Data

Different algorithms require different methods of data labeling. Please see Data Labeling in Mech-DLK
for detailed instructions.

Attention: Please make sure to check the labeling quality: After labeling, be sure to check whether
all images have been labeled and verify whether every label corresponds with the labeled object.
Labeling errors act as counterexamples in the dataset and will adversely affect the training process
and the model performance.

The quality of labeling should be evaluated in terms of completeness, correctness, consistency, and
accuracy:

1. Completeness: Label all objects that meet the labeling rules without omission.

2.1. Instance Segmentation 29

i o/

MECH MIND Mech-DLK

Bad example: Omitted labeling. Good example: Label all ohjects involved.

Note: Please do not omit any objects involved when labeling.
Figure 7. Completeness of labeling

2. Correctness: Ensure that each object correctly corresponds to its label, without any mismatches
between objects and their labels.

Bad example: Wrong labeling. A Mentos is Goaod example: Correctly labeling all objects.

labeled as a z—‘ida.

Figure 8. Correctness of labeling

3. Consistency: All data should be labeled under the same rules. For example, if the labeling rules
stipulate that only objects with 85% of the entire surface exposed should be labeled, then all objects
that meet this rule should be labeled without exception.

2.1. Instance Segmentation 30

i o/

MECH MIND Mech-DLK

Bad example: The same track link's labeling status differs across training data images.

requirements. If yes, please label the track link in the images in which it is not yet labeled:
otherwise, please delete all the label(s) applied to this track link.

Figure 9. Consistency of labeling

4. Accuracy: The drawn contour of the labeled object should closely fit the actual outline of the
object, not excluding parts of the object or including parts of another object.

Bad example: Label only partof Good example: Correct Bad example: [nclude other
an ohject. labeling. objects in one labeling.

Note: Please label each crankshaft completely and exclusively and do not omit necessary pixels or
include additional pixels.

Figure 10. Comparison of different labeling accuracies

2.1. Instance Segmentation 31

i o/

MECH MIND Mech-DLK

2.1.4 Train the Model

Using Mech-DLK to Train the Model

Please see Mech-DLK Quick Start for detailed instructions.

Training Parameters

In most cases, training with the default parameters is sufficient; the following parameters should only be
adjusted under special requirements.

2.1. Instance Segmentation 32

i o/

MECH MIND Mech-DLK

=

Dataset Info Augmentation Params
Total Sample: 0 Brightness Range (
-20

Supervised Mode

Contrast Range
Training Status
El;j och: 0100
Timeleft: 00:00:00

TimeElapsed: 00:00:00

Best Result

Best Epoch: 0

@® Flip

(O Channel Shuffle

Training Params
Total EFICH'_'I"IS 100

Learning Rat 0.001

Reset Apply

Figure 1. Training Parameters in Mech-DLK

2.1. Instance Segmentation 33

i o/

MECH MIND Mech-DLK

Brightness Range

When the on-site lighting conditions vary greatly and cannot be stabilized or compensated by
shading or supplemental light, it is necessary to increase the brightness range accordingly.
Otherwise, please keep the default values.

Contrast Range

When the difference between the object and the background is not obvious, the
contrast range can be adjusted accordingly to facilitate the model’ s learning on object features.
The contrast range is usually adjusted in conjunction with the brightness range. This case seldom
occurs, so normally the contrast range does not need to be adjusted.

Translation Range

If the object container, such as bin, pallet, etc., moves over a relatively wide range, the
translation range needs to be increased. Otherwise, please keep the default value.

Rotation Range

When the object is at a fixed position and its orientation needs to be distinguished, the range
needs to be adjusted to 0-0 to avoid affecting the model’ s learning on orientation features due
to rotation. Otherwise, please keep the default value.

Scale Range

When the heights of objects, i.e., distances to the camera, vary greatly, or the volumes of
objects at the same height vary greatly, please increase the scale range. Otherwise, please keep
the default value.

Flip

When the object is at a fixed position and its orientation needs to be distinguished, please
deselect the Flip option to avoid affecting the model’ s learning on orientation features.
Otherwise, please keep the default setting. This parameter is usually adjusted in conjunction
with the Rotation Range parameter.

Channel Shuffle

This option enables the color channel shuffle function during image data processing to enhance
the model’ s generalization ability. When objects have similar shapes and the
classification relies on object colors, please deselect this option to avoid affecting the model’
s learning on color features. Otherwise, please keep the default setting.

Total Epochs

When no classification is needed and object features are simple, please set the total number of
epochs to be within 600. Otherwise, please set it to be within 1,000.

Learning Rate

This parameter normally does not need to be adjusted. When the accuracy is low (< 0.8) or
drops steeply, please set it to one-tenth of the current value.

Attention: Larger ranges of parameters do not necessarily lead to a better training effect. If any
of the parameters’ ranges unnecessarily cover values nonexistent in reality, the training effect will be
adversely affected. For instance, when the light conditions are stable but the brightness range is too
large, the training effect will not be as good as when the brightness range is of the proper value.

2.1. Instance Segmentation 34

i o/

MECH MIND Mech-DLK

2.1.5 Use the Model

Using Instance Segmentation Model in Mech-Vision

Below is a typical piece of programming involving instance segmentation in Mech-Vision.

Capture Images from Camera (1)

Image/Depth Image/Color | Cloud(XYZ) Cloud(XYZ-RGE) @ Siring

Image
Scale Image in 2D ROI (1) > ¥

L]

il
Image MumberList’ScaleParam MNumberList/Roi Image

Image/Color Image/Depth-

Instance Segmentation (1) > L

Yy
Image/Color Image/Color/Mask [| Stringlist Image/ColorMask [MumberList

Image[] Image NumberlList’ScaleParam MNumberList'Roi
Recovery Scaled Image in 2D ROI (1) " 3

a
Image []

Figure 1. Programming involving instance segmentation in Mech-Vision

Step 1: Capture images from the camera.

2.1. Instance Segmentation 35

i o/

MECH MIND Mech-DLK

Step 2: Scale the images within the 2D ROI to keep the ROI of the actual data consistent with
that of the training data. Normally, please set Auto Scale under Color ROI Scaling in the parameter
panel to True, as shown in Figure 2.

Property

FProperty Value
Step Name Scale Image in 2D ROI_1
Execution Flags Continue When Mo Output
Mum of Input Ports (1 to 8) 1
Color ROI Settings ROIByFile %

Color Roi File color_image _roi

Method to Update Color ROI Origin ¥
Color ROI Scaling

Auto Scale [] False

Customized Scale 1.0000

Ideal Destination Resolution
Same as Input Color ROI & Skip S... False
Width 1024 pixel
Height 1024 pixel
Padding Color
Padding v True
R (0 to 255) 0
G (0 to 255) 0

B (0 to 255) 0

Figure 2. Auto scale

Step 3: Instance Segmentation outputs the instance segmentation results. Please determine whether
the results meet the project requirements, whether the masks are complete, and whether there are
omissions or mistakes.

After ensuring the paths of the Model File and the Configuration File are correct, please check the
settings of the parameters marked with red boxes in Figure 3 based on the following rules.

2.1. Instance Segmentation 36

i o/

MECH MIND Mech-DLK

Property Value
Step Name Instance Segmentation_1
Execution Flags Continue When No Qutput
Server & Model
Server IP 127.
Server Port (1 to 65535) 50052
Maodel File
Configuration File
Preload Settings
Preload Model on Project Open
Max Detected Objects (0 to 2000)
Confidence Threshold (0 to 1.0
Font Settings
Customized Font Size
Font Size (0 to 10)
MNotify Mech-Viz the Num of Detected ...

Acceptable Mean for Gray-scaled Input
Min (0 to 255)

Max (0 to 255)

Visualization Settings
Draw Instances on Image Fal
Method to Visualize Instances Instances ¥
Filtering Settings

Filter Objects Near Image Border False

Figure 3. Important parameters of the Instance Segmentation Step

Preload Settings -> Max Detected Objects (0 to 2000) Please increase the value when the
model needs to detect many objects at a time. If the number of objects that the model needs
to detect at a time is small, and the project requires a short cycle time, please decrease the value
of this parameter to optimize the cycle time.

Preload Settings -> Confidence Threshold (0 to 1.0) Normally, the confidence threshold can be
kept at the default value 0.7. When a detected object’ s confidence is lower than this value, this
object is considered not meeting the requirements for picking and its confidence will be displayed
in red. Please tune this parameter based on actual project needs. For instance, when objects with
lower confidences still have comparatively complete masks and meet the requirements for picking,
the confidence threshold can be lowered to include more objects as candidates for picking.

2.1. Instance Segmentation 37

i o/

MECH MIND Mech-DLK

Font Settings -> Customized Font Size Normally the default value works well. When the objects
to recognize are small, please decrease the font size to better display the results.

Visualization Settings -> Draw Instances on Image When set to True, the recognized objects’
masks are displayed to show the effect of instance segmentation. Setting it to False during the
actual project run can reduce the cycle time of the project.

Visualization Settings -> Method to Visualize Instances
o When set to Classes: objects’ masks are displayed in different colors based on object labels.
e When set to Instances: the mask of each object is displayed in a different color.

e When set to Threshold: the masks of objects whose confidences are above the threshold are
displayed in green, otherwise, red.

Tip: If a project requires two instance segmentation models, please add two Instance Segmentation
Steps, and set the model files and configuration files separately. In addition, please set the Server IP
of the two Steps to 127.0.0.1:50052 and 127.0.0.1:50053, respectively; otherwise, port conflicts will
oceur.

Step 4: Recovery Scaled Image in 2D ROI restores the image to its original size.

2.2 Image Classification

2.2.1 Introduction to Image Classification

What Image Classification Does

Image classification solves the problem of what an object is.

In industrial scenarios, image classification means recognizing workpieces’ types, models, front and back
faces, and correctness of placing, etc.

In the example below, the target objects are almonds, walnuts, and cashews. Given an image, the image
classification model determines whether it is an almond, walnut, or cashew in the image and assigns the
corresponding label to the image.

2.2. Image Classification 38

i o/

MECH MIND Mech-DLK

classification

Almond

classification

[

classification

Figure 1. Classifying and assigning labels to images

Attention: A label assigned by an image classification model is for the entire image. If an image
contains multiple objects of different classes, classification of such an image requires the image to be
segmented first so that each segment contains only one object. Alternatively, instance segmentation
or object detection can be used based on actual needs.

2.2. Image Classification 39

i o/

MECH MIND Mech-DLK

Typical Industrial Application Scenarios of Image Classification

The image classification model can be used for projects that involve classifying different images. The
following are some typical application scenarios:

o Distinguishing the type, orientation, front and back faces of workpieces for machine tending
projects.

Figure 2. Recognizing different types of workpieces for machine tending

e Judging whether the objects are placed correctly for assembly or picking.

Figure 3. Determining whether objects are placed correctly

2.2. Image Classification 40

i o/

MECH MIND Mech-DLK

Application Process of Image Classification

Given a sufficient quantity of correctly labeled training image data obtained from actual application
scenarios, an image classification model can be properly trained to correctly classify target objects. The
application process of image classification is as follows:

e Collect the Training Data: take enough pictures of target objects in each class with the camera.
e Label the Training Data: assign a label corresponding to the object to each picture.
e Train the Model: feed the labeled data to the image classification model for training.

e Use the Model: apply the trained model in an actual project.

2.2.2 Collect the Training Data

Check the Data Collection Environment

Please see Collect the Training Data for details about setting up the image data collection environment.

Attention: Image classification model is susceptible to changes in lighting conditions. When
collecting data, please keep the lighting conditions consistent throughout the process. If the on-site
lighting conditions change over the day, image data should be collected respectively under different
conditions.

Quantity of Data to Collect

e The recommended quantity is 20 images for each class.

Object Placing for Data Collection
All different placing conditions should be included in the dataset, and the number of images for each
placing condition should be reasonably allocated based on the actual project conditions.

For example, if the objects come in horizontal and vertical poses in the actual application, but only
images of horizontal incoming objects are collected and used for training, then the resulting model’ s
performance on the vertical objects cannot be guaranteed.

Therefore, when collecting data, please take all circumstances in the actual application into
consideration as much as possible. Factors include the following:

o All object orientations that may appear in the actual application;
o All object positions that may appear in the actual application.

1. Orientations

2.2. Image Classification 41

i o/

MECH MIND Mech-DLK

Figure 1. Different orientations

2. Positions

2.2. Image Classification 42

i o/

MECH MIND Mech-DLK

Figure 2. Different positions

Use Mech-Vision to Collect Data
After checking the data collection environment, determining the data quantity to collect, and listing all

the possible ways of object placing, please collect the data following the instructions in Use Mech-Vision
to Collect Data.

Data Collection Examples from Past Projects

Valve, single class

e The front and back faces of the valve need to be distinguished.
e Valves’ positions vary relatively slightly.

e 10 images for the front face and 10 for the back collected.

2.2. Image Classification 43

i o/

MECH MIND Mech-DLK

Figure 3. Front and back faces of the valve

Engine valve, single class

e Need to determine whether an engine valve is correctly placed in a slot.

e If not in a slot, an engine valve may be in a variety of poses, so different positions and orientations
need to be considered for data collection. Therefore, about 20 images need to be collected for this
case.

e Ifin a slot, an engine valve may be in different positions, but can only be in one of two orientations
(as shown in Figure 4). Therefore, about 10 images need to be collected for this case.

2.2. Image Classification 44

i o/

MECH MIND

Mech-DLK

Figure 4. Engine valve in a slot and not in a slot

Sheet metal parts, two classes

e Object size needs to be distinguished.
e Objects may be in different positions and orientations.

e 20 images collected for the front face and 20 for the back.

2.2. Image Classification

45

i o/

MECH MIND Mech-DLK

Figure 5. Front & back faces of sheet metal parts

2.2.3 Label the Training Data

Create Label(s)

Please create label(s) based on project needs. For instance, if the project need is distinguishing the front
and back faces of a workpiece, please create the labels “front” and “back” .

Attention: Label names should be relevant to the objects and easily recognizable. Please do not
use meaningless names like a, b, tmp, etc. Label names should only include letters or numbers.

2.2. Image Classification 46

2

MECH MIND Mech-DLK

Determine Method of Labeling

1. If the task is to distinguish different parts of a single object, please label the prominent feature for
each part with boxes, as shown below.

Figure 1. Labeling the prominent features for different parts of a single object

2. If the task is to distinguish objects of different classes, please envelop the entire object with a box,
as shown below.

2.2. Image Classification 47

i o/

MECH MIND Mech-DLK

Figure 2. Labeling different objects with boxes

3. If the input images for the actual application have the background removed, please label the entire
contour of each object in the training dataset, as shown below.

Figure 3. Labeling the entire contours of objects

Attention: Please ensure the quality of labeling. Any incorrect labels will adversely affect model
performance. For instance, if in ten images of the workpiece’ s front face, one is labeled as “back”
, the classification performance will be severely affected.

2.2. Image Classification 48

i o/

MECH MIND Mech-DLK

2.2.4 Train the Model

Using Mech-DLK to Train the Model

Please see Train the Model for details.

2.2.5 Use the Model

Using Image Classification Model in Mech-Vision

input data to the Image Classification Step should be consistent with the model training data.

Attention: The model file is in the .pth format and the configuration file is in the .json format. The

Property Value
Step Mame Image Classification_1
Execution Flags Continue When Mo Output
Server & Model
Server IP 127.0.0.1
Server Port (1 to 65535) 10086
Model File

Image [] Image/Depth [] -
Color Images Depth Images

Image Classification (1) p +

Configuration File

Inout data i . s Preload Settings
nput data Is necessa or po 1 . -
P S Necessary lor po Preload Model on Project Open False

StringList NumberlList Confidence Threshold (0 to 1.0) 0.7000
Labels Confidence

Figure 1. The Image Classification Step in Mech-Vision

2.2. Image Classification

49

CHAPTER

THREE

TYPICAL SCENARIOS

3.1 Box Palletizing/Depalletizing

Box palletizing/depalletizing projects usually utilize instance segmentation to segment each box in an
image and identify its position.

Mech-Mind Robotics provides a Super Model tailored for box palletizing/depalletizing scenarios, which
can be used directly in Mech-Vision to segment most box types without training.

A Super Model refers to a generic deep learning model trained on massive amounts of data
and applicable to certain types of objects, such as boxes, sacks, shipping packages, etc.

The overall application process is as follows:
1. Use the Super Model and check its performance.

Please see Use the Model for instructions on using an instance segmentation model in
Mech-Vision. Check if all box types involved in the project can be correctly segmented.
If so, the project can be run using the Super Model, and there is no need to do the
following steps; otherwise, please proceed to the next step.

Attention: Regardless of how well the Super Model performs, please keep all testing
data for any possible further testings.

2. Collect image data on boxes not correctly segmented.

In general, the Super Model can recognize most boxes. In rare cases, such as when
the boxes are fitted closely together or have complicated surface patterns, segmentation
errors may occur, or masks may be incomplete. In such cases, image data of the boxes
that are not correctly recognized need to be collected for further training.

For example, if the Super Model can correctly segment 18 out of 20 box types, then
image data on the remaining 2 types need to be collected.

Another example is that, if all separately placed boxes are correctly segmented, but
closely fitted boxes are not, then image data on closely fitted boxes need to be collected.

o Quantity of images to collect: twenty images for each box type (or type of placing)
e Data requirements:

— Collect a total of 10 images of closely fitted boxes at different heights (top,
middle, and bottom layers);

50

2

MECH MIND Mech-DLK

— Collect a total of 10 images of full layers, half-full layers, partially-filled layers
at different heights (top, middle, and bottom layers).

The following are some examples of images to collect:

Figure 1. Closely fitted boxes at the top (left), middle (center), and bottom layers (right)

Figure 2. A full top layer (left), a half-full middle layer (center), and a partially-filled bottom layer
(right)

3. Remove the background from the images.

As boxes usually come in stacks on pallets, background removal helps avoid interference
in recognition and significantly improves the model” s performance. Background removal
can be done in Mech-Vision using the Steps shown in Figure 3.

3.1. Box Palletizing/Depalletizing 51

i o/

MECH MIND Mech-DLK

Capture Images from Camera (1)

Image/Depth Image/Color Cloud(XYZ) Cloud(XYZ-RGB)
Camera Depth Image Camera Color Image |Point Cloud Colored Point Cloud

Image/Depth
Depth Image

Invalidate Depth Pixels Outside 3D ROI (1) p ¥ Image/Color/Mask []
= Mask Images

Merge Mask Images (1) p ¥

Image/Depth

Processed Depth Image
Image/Color/Mask
Merged Mask Image

Image/Depth
Depth Image
Image/Color

Segment Depth Image (2) ¥ Original Image

Morphological Transformations (1) p ¥
Image/Color/Mask [] =
Segements Mask Images

Image/Color

Processed Image

Image/Depth Image/Color/Mask []
Depth Image Area Masks

Get Highest Areas in Depth Image (1) p» gﬂ?gel :Taff 1]
- olor Image Masks

Apply Masks to Image (1) +
Image/Color/Mask [] PP ’ gethp 13
Masks of Highest Layer
Image []

Masked Images

Figure 3. Mech-Vision Steps for removing background from images

Figure 4. The image before (left) and after (right) background removal

3.1. Box Palletizing/Depalletizing 52

i o/

MECH MIND Mech-DLK

4. Label the training data.

Please see Label the Training Data for instructions on data labeling. Palletiz-
ing/depalletizing scenarios only require labeling the upper surfaces of boxes, and only
those upper surfaces that are completely exposed need to be labeled.

Figure 5. Labeling the contour of the upper surface

5. Train the model.

Please see Train the Model for instructions on model training. The parameter Total
Epochs should be set to 200, and other parameters should be kept as default.

6. Use the new model.
Please see Use the Model for instructions on using a model in Mech-Vision.
7. Repeat steps 2 to 6 when necessary.

Sometimes, not all box types are available during the early stage of a project. Please
repeat steps 2 to 6 to update the model with the image data of the new box types.

3.2 Sack Palletizing/Depalletizing

Sack palletizing/depalletizing projects usually use instance segmentation to segment each sack in an
image.

Mech-Mind Robotics provides a Super Model tailored for sack palletizing/depalletizing scenarios, which
can segment sacks of most types without training.

The overall application process is as follows:

1. Use the Super Model in the project and check if all sack types involved in the project can be
correctly segmented. If so, the project can be run using the Super Model, and there is no need to
do the following steps; otherwise, please proceed to the next step.

2. Collect image data on those sacks that cannot be correctly segmented by the model for further
training.

3. Label the collected data.

3.2. Sack Palletizing/Depalletizing 53

i o/

MECH MIND Mech-DLK

4. Train the model using the labeled data.
5. Use the newly trained model in Mech-Vision and check its performance.

6. Sometimes, not all sack types are available during the early stage of a project. Please repeat steps
2 to 6 to update the model with the image data of the new sack types.

3.2. Sack Palletizing/Depalletizing 54

CHAPTER
FOUR

MECH-DLK HANDBOOK

4.1 Overview of Mech-DLK

4.1.1 Brief Description

Mech-DLK is a deep learning platform software independently developed by Mech-Mind Robotics. With
a variety of built-in industry-leading Al algorithms and through intuitive and simple Ul interactions, it
helps customers solve complex problems, including overlapping object recognition, highly difficult defect
detection, and product grading and classification, etc. It can improve production efficiency, product yield,
and reduce production line labor costs, and is suitable for industries including consumer electronics, new
energy, automobiles, home appliances, logistics, etc.

vechoLkit (D GID GD G @D @
a
an 00
A B

4.1.2 Introduction of the Module Feature
Classification: Classify multiple types of objects. Given a limited amount of images of different types
of objects, this module can classify different types of objects by deep learning.

Object Detection: Quickly detect objects in images. Given a limited amount of images, this module
can detect and locate target objects.

Semantic Segmentation: Detect the defects in images. Given a certain amount of positive (OK)
samples and negative (NG) samples, this module can detect the defects in images via deep learning.

55

i o/

MECH MIND Mech-DLK

Instance Segmentation: Segment and locate the target objects in images and classify them. Given a
limited amount of images, this module can locate different objects and classify them via deep learning.

Attention: All of the above modules can be used separately to train deep learning models that
meet your needs. If you have customized requirements for a variety of functions, Mech-DLK can also
meet your needs by cascading different modules for training.

4.1.3 Custom Development Configuration Requirements

Windows 7 and above
VS2013, VS2015, VS2017, VS2019 (Recommended)
C, C++, C#

Operating system
Development platform
Programming language

4.2 Environment Configuration

4.2.1 Hardware Requirements

Mech-DLK Pro-Run

Windows 10

Core i5 or above

8GB or above

GeForce GTX 1650(4GB) and above

Mech-DLK Pro-Train/Standard

Operating System
CPU

RAM

Graphics Card

Core i7 or above
16GB or above

GraphDesktop Laptop

ics

Card

Model

10 NVIDIA GeForce GT 1030 NVIDIA GeForce GTX 1050 | NVIDIA GeForce GTX 1050

Se- | NVIDIA GeForce GTX 1050Ti NVIDIA GeForce GTX | NVIDIA GeForce GTX 1050Ti

ries | 1060 NVIDIA GeForce GTX 1070 NVIDIA GeForce GTX | NVIDIA GeForce GTX 1060
1070Ti NVIDIA GeForce GTX 1080 NVIDIA GeForce | NVIDIA GeForce GTX 1070
GTX 1080Ti NVIDIA GeForce GTX 1650 NVIDIA | NVIDIA GeForce GTX 1080
GeForce GTX 1650 SUPER NVIDIA GeForce GTX 1660 | NVIDIA GeForce GTX 1650
NVIDIA GrForce GTX 1660Ti NVIDIA GeForce GTX | NVIDIA GeForce GTX 1650Ti
1660 SUPER NVIDIA GeForce GTX 1660Ti

20 NVIDIA GeForce RTX 2060 NVIDIA GeForce RTX 2060 | NVIDIA GeForce RTX 2060

Se- | SUPER NVIDIA GeForce RTX 2070 NVIDIA GeForce | NVIDIA GeForce RTX 2070

ries | RTX 2070 SUPER NVIDIA GeForce RTX 2080 NVIDIA | NVIDIA GeForce RTX 2080
GeForce RTX 2080Ti NVIDIA GeForce RTX 2080 SUPER

30 NVIDIA GeForce RTX 3050 NVIDIA GeForce RTX 3060 | NVIDIA GeForce RTX 3050

Se- | NVIDIA GeForce RTX 3060Ti NVIDIA GeForce RTX | Laptop GPU NVIDIA GeForce

ries | 3070 NVIDIA GeForce RTX 3070Ti NVIDIA GeForce | RTX 3060 Laptop GPU NVIDIA
RTX 3080 NVIDIA GeForce RTX 3080Ti NVIDIA | GeForce RTX 3070 Laptop GPU
GeForce RTX 3090 NVIDIA GeForce RTX 3080

Laptop GPU
4.2. Environment Configuration 56

i o/

MECH MIND Mech-DLK

4.2.2 Environment Configuration

You can run the environment configuration program by double-clicking on
Mech__Mind__software__environment__installer.exe. If an environment of an earlier version is al-
ready installed, the program will check if there are any missing components in the current environment
and automatically update the environment to the latest version.

1. Select the computer type.
&~ Mech-Mind Software Suite Environment Configuration

Select Computer Type

Please select computer type.
® Desktop
O Moteboo

[Wext] [Cancel J

2. The executable program will check the current environment of your computer. Please click on Next

4.2. Environment Configuration 57

i o/

MECH MIND Mech-DLK

to continue the installation. If a window as shown in Figure 8 appears, the environment is installed
successfully.

= Mech-Mind Software Suite Environment Configuration

Environment check for Mech-Mind Software Suite

» Graphics card &
b Graphics driver (%
) CUDA QD
» Python &)
‘ Q

Python library

The current environment does not meets the requirements. Click
“Next” to install the missing components.

[Hext | [Cancel J

Figure 2. Check the DL environment

4.2. Environment Configuration 58

i o/

MECH MIND Mech-DLK

s

& Mech-Mind Software Suite Environment Configuration

Environment check for Mech-Mind Software Suite

Graphics card

Graphics driver

CUDA

Python
Python library

Q0000

The current environment meets all the requirements. Click
“Next"” to finish and close the environment configuration wizard.

[Hext | [Cancel |

Figure 3. Installation succeeded

4.2. Environment Configuration 59

i o/

MECH MIND Mech-DLK

4.3 Mech-DLK Quick Start

e This section shows how to train and export an example model that can be used for defect detection
and defect classification.

¢ You can use a Semantic Segmentation module cascaded with a Classification module in Mech-DLK
to make a final trained model.

e Before using Mech-DLK, please ensure that Deep Learning Environment and Mech-DLK are both
installed successfully.

1. Create a new project

Open Mech-DLK, click on New Project to create a new project, as shown in Figure 1.

Figure 1. New project

2. Name and save the project

Name the project, select a folder to save the project, and add descriptions if necessary. Then click
on OK to finish setting, as shown below.

4.3. Mech-DLK Quick Start 60

i o/

MECH MIND Mech-DLK

Directory

Description

Cancel

Figure 2. Project settings

3. Select a module

Add a module: Click on on the right side of the panel Modules, and then select Semantic
Segmentation. Click on OK to finish setting.

4.3. Mech-DLK Quick Start 61

i o/

MECH MIND Mech-DLK

Fle Edit Settings Help

Camera lens
Modules

L]
€D seraric segmentation O e

© instance Segmentation © object Detection

Cancel

Figure 3. Add module

4. Import data

Click in the upper left corner to import local images.

Fle Edit Settings Help

Camera lens *

Clear labels &Y & @ Displaylabels 100% ¥ C3 Display predictions 100% Modules

Import v

Name Set Lobel Pred. Confid n
Semantic Segmentation
]

210514-15070.. Train

Parameters. Training Validation

210514-15070...

210514-15070.

210514-15070... Val.
2 21051415

3 210514-150

Labeled Images

Classes Current image

Defect

Validate

Figure 4. Import data

4.3. Mech-DLK Quick Start 62

i o/

MECH MIND Mech-DLK

Attention: Images imported into the Semantic Segmentation module must include defect-free
images, which should also be included in both the validation set and the training set, or else an
alert will be displayed and the training cannot continue.

1. Labeling

The Semantic Segmentation algorithm will have an automatically generated Defect label. You can

/
use the tools , a and E” on the left to label the images.

Camera lens *

100% Modules

Import v

Set Label Pred. Confid o

Semantic Segmentation
L]

Train 1

Val

Figure 5. Labeling in Semantic Segmentation

2. Train the model

Click on Train in the lower right corner to start training. Click on Show chart to check the accuracy
and loss during the training.

4.3. Mech-DLK Quick Start 63

i o/

MECH MIND Mech-DLK

Fle Edit Settings Help
Camera lens
Modules
m o
¢ BB =
Import v

Name Set Label Pred -

210514-15070... Train 1 ° Semantic Segmentation

LI
.. Train

. Train
Parameters Training Validation

Training Info

Optimal Result

15070...

14-15070...
00:00:00
3 210514-15070.

Labeled Images

Comment

m
‘] hp il
I
Nl

1
S
!
ljl‘l“‘k I‘

/|
\a|
WAL

Validate

Figure 6. Learning curves in the chart

3. Validate the model

After training the Semantic Segmentation model, click on Validate to validate the results. A
training result will be saved after the validation.

Edit Settings

Camera lens

m o
¢ B8 =
Import v
et Label Pred -
Train 1 1 Semantic Segmentation
LI

Train

.. Train

Training

Defects

15070...

@ 1786260

15070,

Labeled Images

Comment

Validate

Figure 7. Validation

4.3. Mech-DLK Quick Start 64

i o/

MECH MIND Mech-DLK

4. Add another module

After confirming that the model training is completed and satisfactory, click on in the upper
right corner to add the Classification module.

& & @ Disploylabels

Parameters Training Validation

00:00:00

Validate

Figure 8. Add another module

5. Import the data to the Classification module
The training result of the previous model will be imported as the source data to the Classification

module. Click on LS to display all selectable images, and then manually select the
images needed for training/validation of classification.

4.3. Mech-DLK Quick Start 65

i o/

MECH MIND Mech-DLK

Figure 9. Import source data

6. Label images of different classes

Before labeling images of different classes, you need to click on in the lower left part of the
panel Classes to create different labels for different classes. After creating the labels, you can label

the images by clicking on or

4.3. Mech-DLK Quick Start 66

i o/

MECH MIND Mech-DLK

Figure 10. Classification and labeling

7. Train the model

Click on Train in the lower right corner to start training. Click on Show chart to check the accuracy
and loss of the training.

8. Export the final model

After the training of the model is completed, click on Ezport to export the trained model. You can
select a folder to save the final model, and the model file is as shown below.

model.dlkpack

Figure 11. Model file

4.3. Mech-DLK Quick Start 67

i o/

MECH MIND Mech-DLK

4.4 Terminology

Annotate:

Manually select target objects in images and add labels to them.
Label:

The tag added to an image after annotation to identify its class.
Dataset:

The .dlkdb file containing annotated data exported by Mech-DLK.
Labeled:

The image data status of having been annotated manually.
Unlabeled:

The image data status of having not been annotated manually.
Training Set:

An image data set that has been annotated manually and is used to train the model.
Validation Set:

An image data set that has been annotated manually and is used to validate the training
effect of the model.

OK Image:
A defect-free image.
NG Image:
An image with object defect.
Train:
The process of using a training set to train a deep learning model.
Validate:

The process of using a trained model to predict on the validation set and comparing the
results with the validation set labels.

Accuracy:

The ratio of the number of correctly predicted samples to the total number of samples when
the model predicts on a validation set.

Loss:

The degree of inconsistency between the validation set result labels from model prediction
and the actual labels.

Epoch:

The number of passes of the entire training set the machine learning algorithm has completed
for training.

4.4. Terminology 68

i o/

MECH MIND

Mech-DLK

4.5 Shortcuts

No. | Feature Shortcut Comment
Key

1 Create a new project Ctrl + n

2 Save the project Ctrl + s

3 Open the Project Ctrl + o

4 Undo the labeling Ctrl + y

5 Redo the labeling Ctrl + z

6 Copy the label Ctrl + ¢

7 Paste the label Ctrl + v

8 Select all labels Ctrl + a

9 Delete the label Delete Select the label in the labeling area
first

10 Label Tool -> Ellipse 1

11 Label Tool -> Polygon g

12 | Label Tool -> Rectangle r

13 Label Tool -> Brush b

14 | Label Tool -> Auto fill by contour a

15 Label Tool -> Eraser e

16 Label Tool -> Mask m

17 | Label Tool -> Select S

18 | Clear all labels in labeling area Ctrl +1

19 Delete image in the data set Delete Select the image in the data set section
first

20 Switch between items in a list / drag to | T — « Select an image in the data set section

scroll

first

4.5. Shortcuts

69

CHAPTER
FIVE

FAQ

. Is it feasible to simulate changes in lighting conditions during data collection by man-
ually adjusting the camera exposure or adding supplemental light?

No. Simulated lighting conditions may not reflect the actual conditions accurately, and
thus image data collected under such conditions cannot provide accurate object features
to train the model. Therefore, if the lighting conditions on site change over the day,
please collect image data respectively under different conditions.

. In the actual application, the camera is fixed, and the incoming objects’ positions vary
slightly. Is it feasible to simulate the position changes of the objects by moving the
camera during data collection?

No. The camera should be fixed in position before any data collection. Moving the
camera during data collection will affect the extrinsic parameters of the camera and the
training effect.

For the case in question, setting a larger ROI can capture the changes in object position.

. If the previously used camera has unsatisfactory imaging quality and is replaced by a
new camera, is it necessary to add the images taken by the old camera to the dataset?

No. After camera replacement, all data used for model training should come from the
new camera. Please conduct data collection again using the new camera and use the
data for training.

. Will changing the background affect model performance?

Yes. Changing the background will lead to recognition errors, such as false recognition
or failure to recognize a target object. Therefore, once the background is set in the early
stage of data collection, it is best not to change the background afterward.

. Is it possible to use the image data collected with different camera models at different
heights together to train one model?

Yes, but please work on the ROI settings. Select different ROIs for images taken at
different heights to reduce the differences among images.

. For highly reflective metal parts, what factors should be taken into consideration
during data collection?

Please avoid overexposure and underexposure. If overexposure in parts of the image is
inevitable, make sure the contour of the object is clear.

. If the model performs poorly, how to identify the possible reasons?

70

i o/

MECH MIND

Mech-DLK

10.

11.

12.

Factors to consider: quantity and quality of the training data, data diversity, on-site ROI
parameters, and on-site lighting conditions.

e Quantity: whether the quantity of training data is enough to make the model achieve
good performance.

e Quality: whether the data quality is up to standard, whether images are clear enough
and are not over-/underexposed.

o Data diversity: whether the data cover all the situations that may occur on-site.

e ROI parameters: whether the ROI parameters for data collection are consistent with
those for the actual application.

o Lighting conditions: Whether the lighting conditions during the actual application
change, and whether the conditions are consistent with those during data collection.

How to improve unstable model performance due to complicated on-site lighting con-

ditions, e.g., objects are covered by shadows?

Please add shading or supplemental light as needed.

Why does the inconsistency between the ROI settings of on-site data and training

data affect the confidence of instance segmentation?

The inconsistency will result in objects being out of the optimal recognition range of
the model, thus affecting the confidence. Therefore, please keep the ROI settings of the
on-site data and training data consistent.

What scenarios is the Super Model for boxes suitable for?

It is suitable for palletizing/depalletizing boxes of single or multiple colors and surface
patterns. However, please note that this Super Model is only applicable to boxes placed
in horizontal layers and are not at an angle to the ground.

How to collect data for the Super Model for boxes?

Please test the Super Model first. If it cannot segment correctly sometimes, collect
about 20 images of situations where the model does not perform well. Please see Boz
Palletizing/Depalletizing for details.

Does the image classification model work without a GPU?

No.

71

	Quick Guide to Deep Learning
	Deep Learning Applications
	Typical Scenarios
	Mech-DLK Handbook
	FAQ

